• Title/Summary/Keyword: cis/trans carotene isomers

Search Result 3, Processing Time 0.02 seconds

Changes in Carotenoids Contents in Pureed and Cooked Carrot and Spinach during Storage (가열처리 및 저장조건에 따른 당근과 시금치퓨레의 Carotenoids 함량변화와 이성질화 형성에 관한 연구)

  • ;;Robert M, Russell
    • Korean journal of food and cookery science
    • /
    • v.19 no.1
    • /
    • pp.83-95
    • /
    • 2003
  • Investigations were conducted on the changes in carotenoids content, and quantification of cis-trans-${\beta}$-carotene Isomers in pureed and cooked carrot and spinach during storage. The isomerization and degradation of carotenoids were monitored by high-performance liquid chromatography on a C$\_$30/ reversed-phase column with diode-array detection. The results showed that lutein, ail-trans-${\beta}$-carotene, ${\alpha}$-carotene, 9-cis-${\beta}$-carotene and 13-cis-${\beta}$-carotene were present in carrot and spinach. Zeaxanthin and cryptoxanthin were present in raw spinach. The contents of lutein, zeaxanthin, cryptoxanthin, ${\alpha}$-carotene and all-trans-${\beta}$-carotene in pureed and cooked carrot and spinach decreased with increasing storage period. The 9-cis and 13-cis carotenoid isomers were the major types formed in cooked carrot during storage. Cooking was not found to alter the carotenoid profile of the sample, but increased the total amount of carotenoids compared with pured ones. This increase could be explained that cooking itself increased the extraction efficiency and inactivated the enzymes degradating carotenoids.

Changes in the Contents of Carotenoids and Cis/Trans β-Carotenes of Fresh and Cooked Spinach in Foodservice Operations (단체급식에서 시금치의 조리방법에 따른 Carotenoids 및 Cis/Trans β-Carotene 함량의 변화)

  • Lim, Yaung-Iee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.117-123
    • /
    • 2007
  • HPLC quantifications of fresh and cooked (steamed/microwaved) spinach, one of the most frequently consumed vegetables in foodservice operations, were carried out to determine carotenoids compositions. An S-3 $\mu$m C30 stationary phase for reversed-phase columns with diode-array detection was used to separate and quantify geometric isomers of provitamin A carotenoids in the fresh and cooked spinach. The carotenoids in fresh spinach were identified and quantified: Lutein (63.0%), $\beta$-carotene isomers (all-trans 29.6%, 9-cis 3.2%, 13-cis 1.8%, $\alpha$-carotene 0.4%, zeaxanthin 2.1%) and cryptoxanthin. Cryptoxanthin, detected in a trace amount in HPLC, was not quantified in this study. Lutein was little affected by cooking methods and frozen conditions. 9-cis and 13-cis-$\beta$-carotene isomers were major types formed during cooking. Cooking (steam/microwave) did not alter carotenoid profiles of the samples, but the amounts of carotenoids quantified were greater than those in the fresh samples. Heat treatment such as steaming increased total carotenoids contents, especially trans-$\beta$-carotene (p<0.05). The carotenoid contents of the frozen spinach increased even after the microwaved treatment (p<0.05). These increases were likely to result from the increased extraction efficiency and inactivation of enzymes capable of carotenoids degrading during the heat treatments.

Identification of Carotenoid Oxidation Products in Pigment Extracts from Star Ruby Grapefruit Pulp at Different Temperatures with Exposure to Light

  • Shim, Soon-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Pigment extracts obtained from Star Ruby grapefruit pulp were stored at different temperatures (4.5$^{\circ}C$, 23$^{\circ}C$) and exposed to light. many carotenoid oxidation products were formed due to light-exposure during storage periods. They were monitored by using HPLC with photodiode array detection and tentatively identified. Including (all-E)-lycopene and trans-$\beta$-carotene as predominant carotenoids in red grapefruit, 5Z-lycopene, 9Z-lycopene, 13Z-lycopene, and 15-cis-$\beta$-carotene were formed at 4.5$^{\circ}C$, 23$^{\circ}C$. Degradation of all-tarns lycopene was more susceptible to light-exposure and temperature a than that of all-trans $\beta$-carotene. The formation of lycopene cis isomers was favored under lighted condition. Respectively, (5Z)-lycopene was formed in greater amounts than other isomers at 23$^{\circ}C$ storage. The concentration of 15-cis-$\beta$-carotene was significantly increased during storage at 23$^{\circ}C$ storage. The concentration of 15-cis-$\beta$-carotene was significantly increased during storage at 23$^{\circ}C$.

  • PDF