• Title/Summary/Keyword: circumstellar material

Search Result 10, Processing Time 0.025 seconds

Circumstellar Clumps in the Cassiopeia A Supernova Remnant: Prepared to be Shocked

  • Koo, Bon-Chul;Kim, Hyun-Jeong;Oh, Heeyoung;Raymond, John C.;Yoon, Sung-Chul;Lee, Yong-Hyun;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2020
  • Cassiopeia A (Cas A) is a young supernova remnant (SNR) where we observe the interaction of SNR blast wave with circumstellar medium. From the early optical studies, dense, slowly-moving, N-rich "quasi-stationary flocculi" (QSF) have been known. These are probably dense CNO-processed circumstellar knots that have been engulfed by the SNR blast wave. We have carried out near-infrared, high-resolution (R=45,000) spectroscopic observations of ~40 QSF, and here we present the result on a QSF knot (hereafter 'Knot 24') near the SNR boundary of Cas A. The average [Fe II] 1.644 um spectrum of Knot 24 has a remarkable shape with a narrow (~8 km/s) line superposed on the broad (~200 km/s) line emitted from shocked gas. The spatial morphology and the line parameters indicate that Knot 24 has been partially destroyed by a shock wave and that the narrow line is emitted from the unshocked material heated/ionized by the shock radiation. This is the first detection of the emission from the pristine circumstellar material of the Cas A supernova progenitor. We also detected H Br gamma and other [Fe II] lines corresponding to the narrow [Fe II] 1.644 um line. For the main clump where we can clearly identify the shock emission associated with the unshocked material, we analyze the observed line ratios using a shock model that includes radiative precursor. The analysis indicates that the majority of Fe in the unshocked material is in the gas phase, not depleted onto dust grains as in the general interstellar medium. We discuss the non-depletion of Fe in QSF and its implications on the immediate progenitor of the Cas A supernova.

  • PDF

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.

Circumbinary disk modeling of silicate-carbon stars

  • Kwon, Young-Joo;Suh, Kyung-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Silicate-carbon stars are characterized by oxygen-rich (O-rich) dust features despite their carbon-rich (C-rich) photospheres. While the origin of silicate-carbon stars has been a mystery ever since their discovery, the most widely accepted hypothesis is that the silicate-carbon stars have a low-luminosity companion and the O-rich material is stored in a circumbinary disk or a circumstellar disk even after the primary star becomes a carbon star. In order to study the properties of circumstellar dust envelopes of silicate-carbon stars, we perform radiative transfer model calculations using RADMC-3D with an axi-symmetric dust density distribution (a disk) as well as a spherically symmetric dust distribution. For various dust envelope models with different shapes and chemistry, we calculate the model spectral energy distributions (SEDs) and compare the model results with the observed SEDs of selected 5 silicate-carbon stars. The Circumstellar disk models are fairly well fitted with the observational data of 5 silicate-carbon stars. We find some evidences that the circumbinary disk model could be a better explanation for the origin of silicate carbon stars than the simple detached silicate dust shell model of the transition phase of the stellar chemistry.

  • PDF

NEAR-INFRARED SPECTROSCOPY OF YOUNG GALACTIC SUPERNOVA REMNANTS

  • KOO, BON-CHUL;LEE, YONG-HYUN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.145-148
    • /
    • 2015
  • Young Galactic supernova remnants (SNRs) are where we can observe closely supernova (SN) ejecta and their interaction with the circumstellar/interstellar medium. They also provide an opportunity to explore the explosion and the final stage of the evolution of massive stars. Near-infrared (NIR) emission lines in SNRs mostly originate from shocked dense material. In shocked SN ejecta, forbidden lines from heavy ions are prominent, while in shocked circumstellar/interstellar medium, [Fe II] and $H_2$ lines are prominent. [Fe II] lines are strong in both media, and therefore [Fe II] line images provide a good starting point for the NIR study of SNRs. There are about twenty SNRs detected in [Fe II] lines, some of which have been studied in NIR spectroscopy. We will review the NIR [Fe II] observations of SNRs and introduce our recent NIR spectroscopic study of the young core-collapse SNR Cas A where we detected strong [P II] lines.

The study of SN2014J using the high-resolution spectra

  • Park, Keun-Hong;Lee, Hyung Mok;Yoon, Sung-Chul;Sung, Hyun-Il;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.63.2-63.2
    • /
    • 2014
  • We observed a bright type Ia Supernovae SN 2014J located in the nearby starburst galaxy M82 using BOES (Bohyunsan Optical Echelle Spectrograph) for eight nights from day -11 (Jan. 22) to day +102 (May. 15) with respect to maximum brightness in B-band. We found the lines formed in the ejecta such as Si ($6300{\AA}$), whose velocity is more than 10,000km/s respect to the host galaxy as well as those formed in the circumstellar material (e.g. Na I D [$5890{\AA}$, $5896{\AA}$], 100km/s) Also, we found other weak iron ($5780{\AA}$, $5797{\AA}$, $6376{\AA}$, $6613{\AA}$, and $7543{\AA}$), carbon ($8059{\AA}$) and other unknown elements. These lines are also thought to have been formed in circumstellar material. We expect that this study will contribute to revelation of the nature of the progenitor stars.

  • PDF

Cataclysmic Variables as Supernova Ia Progenitors

  • Kafka, Stella
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.163-167
    • /
    • 2012
  • Although the identification of the progenitors of type Ia supernovae (SNeIa) remains controversial, it is generally accepted that they originate from binary star systems in which at least one component is a carbon-oxygen white dwarf (WD); those systems are grouped under the wide umbrella of cataclysmic variables. Current theories for SNeIa progenitors hold that, either via Roche lobe overflow of the companion or via a wind, the WD accumulates hydrogen or helium rich material which is then burned to C and O onto the WD's surface. However, the specifics of this scenario are far from being understood or defined, allowing for a wealth of theories fighting for attention and a dearth of observations to support them. I discuss the latest attempts to identify and study those controversial SNeIa progenitors. I also introduce the most promising progenitor in hand and I present observational diagnostics that can reveal more members of the category.

Infrared Study of a Low-mass Star-forming Region L1251B

  • Choi, Yunhee;Lee, Jeong-Eun;Bergin, Edwin A.;Blake, Geoffrey A.;Boogert, A.C. Adwin;Francesco, James Di;Evans, Neal J. II;Pontoppidan, Klaus M.;Sargent, Annelia I.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.56.1-56.1
    • /
    • 2016
  • A low-mass star-forming region, L1251B, is an excellent example of a small and nearby group of protostellar objects. L1251B has been mapped spectroscopically with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. IRS has provided mid-IR emission lines (e.g., [Fe II], [Ne II], and ro-vibrational H2) and absorption features of CO2 and H2O ice in studying the physical state of the ionized gas and the material residing in the circumstellar environments. We will present the distribution of outflows and ice components in L1251B.

  • PDF

LIFECYCLE OF THE INTERSTELLAR DUST GRAINS IN OUR GALAXY VIEWED WITH AKARI/MIR ALL-SKY SURVEY

  • Ishihara, D.;Kaneda, H.;Mouri, A.;Kondo, T.;Suzuki, S.;Oyabu, S.;Onaka, T.;Ita, Y.;Matsuura, M.;Matsunaga, N.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.117-122
    • /
    • 2012
  • The interstellar dust grains are formed and supplied to interstellar space from asymptotic giant branch (AGB) stars or supernova remnants, and become constituents of the star- and planet-formation processes that lead to the next generation of stars. Both a qualitative, and a compositional study of this cycle are essential to understanding the origin of the pre-solar grains, the missing sources of the interstellar material, and the chemical evolution of our Galaxy. The AKARI/MIR all-sky survey was performed with two mid-infrared photometric bands centered at 9 and $18{\mu}m$. These data have advantages in detecting carbonaceous and silicate circumstellar dust of AGB stars, and the interstellar polycyclic aromatic hydrocarbons separately from large grains of amorphous silicate. By using the AKARI/MIR All-Sky point source catalogue, we surveyed C-rich and O-rich AGB stars in our Galaxy, which are the dominant suppliers of carbonaceous and silicate grains, respectively. The C-rich stars are uniformly distributed across the Galactic disk, whereas O-rich stars are concentrated toward the Galactic center, following the metallicity gradient of the interstellar medium, and are presumably affected by the environment of their birth place. We will compare the distributions of the dust suppliers with the distributions of the interstellar grains themselves by using the AKARI/MIR All-Sky diffuse maps. To enable discussions on the faint diffuse interstellar radiation, we are developing an accurate AKARI/MIR All-Sky diffuse map by correcting artifacts such as the ionising radiation effects, scattered light from the moon, and stray light from bright sources.

High Mass X-ray Binary and IGOS with IGRINS

  • Chun, Moo-Young;Moon, Dae-Sik;Jeong, Ueejeong;Yu, Young Sam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.95-95
    • /
    • 2014
  • The mass measurement of neutron stars or black holes is of fundamental importance in our understanding of the evolution of massive stars and core-collapse supernova explosions as well as some exotic physics of the extreme conditions. Despite the importance, however, it's very difficult to measure mass of these objects directly. One way to do this, if they are in binary systems, to measure their binary motions (i.e., Doppler shifts) which can give us direct information on their mass. Recently many new highly-obscured massive X-ray binaries have been discovered by new hard X-ray satellites such as INTEGRAL and NuSTAR. The new highly-obscured massive X-ray binaries are faint in the optical, but bright in the infrared with many emission lines. Based on the near-infrared spectroscopy, one can first understand the nature of stellar companions to the compact objects, determining its spectral types and luminosity classes as well as mass losses and conditions of (potential) circumstellar material. Next, spectroscopic monitoring of these objects can be used to estimate the mass of compact objects via measuring the Doppler shifts of the lines. For the former, broad-band spectroscopy is essential; for the latter, high-resolution spectroscopy is critical. Therefore, IGRINS appears to be an ideal instrument to study them. An IGRINS survey of these new highly-obscured massive X-ray binaries can give us a rare opportunity to carry out population analyses for understanding the evolution of massive binary systems and formation of compact objects and their mass ranges. In this talk, we will present a sample near-infrared high resolution spectra of HMXB, IGR J19140+0951 and discuss about its spectral feature. These spectra are obtained on 13th July, 2014 from IGRINS commissioning run at McDonald 2.7m telescope. And at final, we will introduce the upgrade plan of IGRINS Operation Software (IGOS), to gather the input from IGRINS observer.

  • PDF

Quantifying Variability of YSOs in the Mid-IR Over Six Years with NEOWISE

  • Park, Wooseok;Lee, Jeong-Eun;Contreras Pena, Carlos;Johnstone, Doug;Herczeg, Gregory;Lee, Sieun;Lee, Seonjae;Bhardwaj, Anupam;Schieven, Gerald
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2021
  • Variability in Young Stellar Objects (YSOs) can be caused by time-dependent accretion rates, geometric changes in the circumstellar disks, the stochastic hydromagnetic interactions between stellar surfaces and inner disk edges, reconnections within the stellar magnetosphere, and hot/cold spots on stellar surfaces. We uncover ~1400 variables from a sample of ~5300 YSOs in nearby low-mass star-forming regions using mid-IR light curves obtained from the 5.5-years NEOWISE All Sky Survey. The mid-IR variability traces a wide range of dynamical, physical, and geometrical phenomenon. We classify six types of YSO variability based on their light curves: secular variability (Linear, Curved, Periodic) and stochastic variability (Burst, Drop, Irregular). YSOs in earlier evolutionary stages have higher fractions of variables at all types and higher amplitudes for the variability. Along with brightness variability, we also find a diverse range of secular color variations, which can be attributed to a competitive interplay between the variable accretion luminosity of the central source and the variable extinction by material associated with the accretion process. We compare the variability of known FUors/EXors and VeLLOs/LLSs, which represent two extreme ends (burst versus quiescent) of the episodic accretion process; FUors/EXors have a higher fraction of variables (65%) than VeLLOs/LLSs (41%). Short-term (few day) and long-term (decades) variability, as well as possible AGB contamination in the YSO catalogues, are also discussed.molecules become more complex by surface chemistry induced directly by high energy photons or by the thermal energy diffused over heated grain surface. Therefore, the ice composition is an

  • PDF