• Title/Summary/Keyword: circular strip foundation

Search Result 12, Processing Time 0.016 seconds

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

Studies on the Development of Bearing Capacity Reinforcement for the Foundation of Soil (기초지반의 지지력보강공법에 관한 연구)

  • 유동환;최예환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.38-49
    • /
    • 1988
  • This paper presented as follows results of laboratory model tests with various shaped footings on soil bed reinforced with the strips on the base of behaviour of soil structure according to the loads and triaxial test results reinforced with geotextiles. Their parameters studied were the effects on the bearing capacity of a footing of the first layer of reinforcement, horizontal and vertical spacing of layers, number of layers, tensile strength of reinforcement and iclination load to the vertical 1.Depending on the strip arrangement, ultimate bearing capacity values could be more improved than urreinforced soil and the failure of soil was that the soil structure was transfered from the macrospace to microspase and its arrangement, from edge to edge to face to face. 2.The reinforcement was produced the reinforcing effects due to controlling the value of factor of one and permeable reinforcement was never a barrier of drainage condition. 3.Strength ratio was decreased as a linear shape according to increment of saturation degree of soil used even though at the lower strength ratio, the value of M-factor was rot influenced on the strength ratio but impermeable reinforcement decreased the strength of bearing capacity. 4.Ultimate bearing capacity under the plane-strain condition was appeared a little larger than triaxial or the other theoretical formulars and the circular footing more effective. 5.The maximum reinforcing effects were obtained at U I B=o.5, B / B=3 and N=3, when over that limit only acting as a anchor, and same strength of fabric appeared larger reinforcing effects compared to the thinner one. 6.As the LDR increased, more and more BCR occurred and there was appeared a block action below Z / B=O.5, but over the value, decrement of BCR was shown linear relation, and no effects above one. 7.The coefficient of the inclination was shown of minimum at the three layers of fabrics, but the value of H / B related to the ultimate load was decreased as increment of inclination degree, even though over the value of 4.5 there wasn't expected to the reinforcing effects As a consequence of the effects on load inclination, the degree of inclination of 15 per cent was decreased the bearing capacity of 70 per cent but irnproved the effects of 45 per cent through the insertion of geotextile.

  • PDF