• 제목/요약/키워드: circular steel column

검색결과 185건 처리시간 0.021초

Boundary Conditions and Fire Behavior of Concrete Filled Tubular Composite Columns

  • Rodrigues, Joao Paulo C.;Correia, Antonio J.M.;Kodur, Venkatesh
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.313-325
    • /
    • 2018
  • Concrete-filled steel tubular (CFST) members are commonly used as composite columns in modern construction. However, the current guidelines for members' fire design (EN1994-1-2) have been proved to be unsafe in case the relative slenderness is higher than 0.5. In addition, the simplified design methods of Eurocode 4 are limited to circular and square CFST columns, while in practice columns with rectangular and elliptical hollow sections are being increasingly used because of their architectural aesthetics. In the last years a large experimental research has been carried out at Coimbra University on the topic. They have been tested concrete filled circular, square, rectangular and elliptical hollow columns with restrained thermal elongation. Some parameters such as the slenderness, the type of cross-section geometry as well as the axial and rotational restraint of the surrounding structure to the column have been tested in order to evaluate their influence on the fire resistance of such columns. In this paper it is evaluated the influence of the boundary conditions (pin-ended and semi-rigid end-support conditions) on the behavior of the columns in case of fire. In these tests it could not be seen a marked effect of the tested boundary conditions but it is believed that the increasing of rotational stiffness increases the fire resistance of the columns.

원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구 (A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube)

  • 박정민;김화중
    • 콘크리트학회지
    • /
    • 제7권3호
    • /
    • pp.199-210
    • /
    • 1995
  • 충전형 강관콘크리트 구조는 강관과 콘크리트 두 재료의 이질적인 재료특성을 상호 보완적으로 발휘하여 구조적 성능향상을 꾀한 것으로서 제구조 특성상 우수한 구조형식이라 할 수 있다. 강관으로 구속된 콘크리트가 중심축력을 받게 되면 내부의 콘크리트는 압괴에 의한 체적 팽창을 외부의 강관에 의해 구속 받게 되므로 3축 압축응력 상태로 되어 압축강도가 증대된다. 또한 콘크리트의 압괴에 의한 탈락 현상이 방지되므로서 단면의 결손이 없어져 내력 저하가 작아진다는 잇점을 가진다. 따라서 본 연구에서는 원형강관으로 구속된 내부 콘크리트의 구조적 거동 특성을 규명하기 위한 것으로서 폭두께비와 충전 콘크리트의 강도를 주요 변수로 하여 일련의 실험을 통하여 강관으로 구속(3축 응력)된 콘크리트의 구조적 거동 특성을 고찰하였다. 일련의 실험을 통하여 얻어진 결론을 요약하면 다음과 같다. (1)강관에 의한 콘크리트의 구속효과는 강관의 폭두께비와 충전 콘크리트의 강도가 낮을수록 현저하며, 원형강관으로 구속된 내부 콘크리트는 최대내력시의 변형능력에 있어서 횡방향 구속이 없는 콘크리트보다 4~7배 정도까지 증대시켜 연성효과를 높일 수 있을 것으로 기대된다. (2)콘크리트의 구속계수를 이용하여 강관으로 구속된 내부 콘크리트의 강도와 콘트리트 충전강관 기둥의 최대내력을 산정할 수 있는 식을 제시하였다.

철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감 (The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.147-157
    • /
    • 2018
  • 철근콘크리트 교량에 대한 대부분의 내진설계기준들은 전체 교량 시스템의 붕괴를 방지하기 위한 성능보장설계를 암시적 또는 명시적으로 적용하고 있다. 이러한 개념 및 규정들을 명시하는 이유는 교량 전체 시스템에 설계지진하중이 작용하는 동안 철근콘크리트 교각들이 완전한 소성회전성능을 발휘할 때까지 구조적인 다른 구성요소들의 취성적인 파괴를 방지하기 위함이다. 이를 위해 철근콘크리트 교량에 대한 내진설계기준들에서는 취성적인 전단파괴를 피하도록 규정하고 있다. 성능보장의 중요한 요소 중의 하나가 교각의 연성거동을 보장하기 위한 전단강도가 충분히 확보되어야 하고 신뢰할 수 있어야 한다. 실험체 8개에 대하여 실험을 수행하였으며 모든 실험체에서 변위비 1.5%에서 다수의 휨-전단 균열이 발생되었고 최종단계까지 균열폭이 증가되었고 균열이 진전되었다. 휨-전단 균열의 각도는 부재 축과 $42^{\circ}{\sim}48^{\circ}$의 범위로 계측되었다. 본 연구에서는 실험에서 계측된 횡방향철근이 부담하는 전단강도에 대한 분석을 중심으로 하였다. 횡방향철근이 부담하는 전단강도, 축력 작용에 의한 전단강도, 콘크리트에 의한 전단강도 등 3요소에 대해 분석하였고 비교하였다. 실험체들의 콘크리트 응력은 도로 교설계기준의 응력한계를 초과하였다.

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • 제2권5호
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.

Effects of deficiency location on CFRP strengthening of steel CHS short columns

  • Shahabi, Razieh;Narmashiri, Kambiz
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.267-278
    • /
    • 2018
  • Structures may need retrofitting as a result of design and calculation errors, lack of proper implementation, post-construction change in use, damages due to accidental loads, corrosion and changes introduced in new editions of construction codes. Retrofitting helps to compensate weakness and increase the service life. Fiber Reinforced Polymer (FRP) is a modern material for retrofitting steel elements. This study aims to investigate the effect of deficiency location on the axial behavior of compressive elements of Circular Hollow Section (CHS) steel short columns. The deficiencies located vertically or horizontally at the middle or bottom of the element. A total of 43 control column and those with deficiencies were investigated in the ABAQUS software. Only 9 of them tested in the laboratory. The results indicated that the deficiencies had a significant effect on the increase in axial deformation, rupture in deficiency zone (local buckling), and decrease in ductility and bearing capacity. The damages of steel columns were responsible for resistance and stiffness drop at deficiency zone. Horizontal deficiency at the middle and vertical deficiency at the bottom of the steel columns were found to be the most critical. Using Carbon Fiber Reinforced Polymer (CFRP) as the most effective material in retrofitting the damaged columns, significantly helped the increase in resistance and rupture control around the deficiency zone.

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.

Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer

  • Chen Wei;Yongbo Shao;Mostafa Fahmi Hassanein;Chuannan Xiong;Hongmei Zhu
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.455-466
    • /
    • 2023
  • To investigate the load bearing capacity of axially preloaded circular hollow section (CHS) stub columns strengthened by carbon fiber reinforced polymer (CFRP), theoretical analysis is carried out. The yield strength and the ultimate strength of a CFRP strengthened preloaded CHS stub column are determined at the yielding of the CHS tube and at the CFRP fracture, respectively. Theoretical models are proposed and corresponding equations for calculating the static strengths, including the yield strength and the ultimate strength, are presented. Through comparison with reported experimental results, the theoretical predictions on the static strengths are proved to be accurate. Through finite element (FE) analyses, parametric studies for 258 models of CFRP strengthened preloaded CHS stub columns are conducted by considering different values of tube diameter, tube thickness, CFRP layer and preloading level. The static strengths of the 258 models predicted from presented equations are proved to be in good agreement with FE simulations when the diameter-to-thickness ratio is less than 90ε2. The parametric study indicates that the diameter and the thickness of the steel tube have great effects on CFRP strengthening efficiency, and the recommended ranges of the diameter and the thickness are proposed.

Experimental study and calculation of laterally-prestressed confined concrete columns

  • Nematzadeh, Mahdi;Fazli, Saeed;Hajirasouliha, Iman
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.517-527
    • /
    • 2017
  • In this paper, the effect of active confinement on the compressive behaviour of circular steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns is investigated. In STCC columns the axial load is only applied to the concrete core, while in CFST columns the load is carried by the whole composite section. A new method is introduced to apply confining pressure on fresh concrete by laterally prestressing steel tubes. In order to achieve different prestressing levels, short-term and long-term pressures are applied to the fresh concrete. Three groups of STCC and CFST specimens (passive, S-active and L-active groups) are tested under axial loads. The results including stress-strain relationships of composite column components, secant modulus of elasticity, and volumetric strain are presented and discussed. Based on the elastic-plastic theory, the behaviour of the steel tube is also analyzed during elastic, yielding, and strain hardening stages. The results show that using the proposed prestressing method can considerably improve the compressive behaviour of both STCC and CFST specimens, while increasing the prestressing level has insignificant effects. By applying prestressing, the linear range in the stress-strain curve of STCC specimens increases by almost twice as much, while the improvement is negligible in CFST specimens.

Eccentric strength and design of RC columns strengthened with SCC filled steel tubes

  • Lu, Yi-Yan;Liang, Hong-Jun;Li, Shan;Li, Na
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.833-852
    • /
    • 2015
  • Self-compacting Concrete Filled steel Tubes (SCFT), which combines the advantages of steel and concrete materials, can be applied to strengthen the RC columns. In order to investigate the eccentric loading behavior of the strengthened columns, this paper presents an experimental and numerical investigation on them. The experimental results showed that the use of SCFT is interesting since the ductility and the bearing capacity of the RC columns are greatly improved. And the performance of strengthened columns is significantly affected by four parameters: column section type (circular and square), wall thickness of the steel tube, designed strength grade of strengthening concrete and initial eccentricity. In the numerical program, a generic fiber element model which takes in account the effect of confinement is developed to predict the behavior of the strengthened columns subjected to eccentric loading. After the fiber element analysis was verified against experimental results, a simple design formula based on the model is proposed to calculate the ultimate eccentric strength. Calibration of the calculated results against the test results shows that the design formula closely estimates the ultimate capacities of the eccentrically compressed strengthened columns by 5%.