• Title/Summary/Keyword: circular jet

Search Result 173, Processing Time 0.022 seconds

Convective Heat Transfer Characteristics on a Plate Cooled by Rectangular Water Jets (사각수분류에 의한 평판상에서의 대류열전달 특성)

  • Kim, Uen-Young;Jeon, Sung-Taek;Park, Jong-Suen;Lee, Doug-Bong
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.53-71
    • /
    • 1995
  • Experiments have been conducted on a planar, free surface jet of water to investigate the effects of aspect ratios(AR=6.67, 15, 26.67), average nozzle velocity($V_0=3.3m/s{\sim}78m/s$) and nozzle-to-plate spacings($Z/W=6{\sim}40$) on the characteristics of heat transfer, when 3 rectangular waterjets impinging on a flat plate which has the uniform heat flux. the scondary peaks which produced by circular jets also produced by rectangular water jets. The position of the scondary peaks depends upon the aspect ratio of nozzle. The heat transfer coefficient was subjected to the influence of aspect ratio. The heat transfer correlations and best position of nozzles which produced maximum heat transfer coefficient at stagnation point are provided.

  • PDF

Spray Characteristics of Liquid Jets in Acoustically-Forced Crossflows (음향가진된 횡단류 유동장 내 액체제트의 분무특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This study investigated the acoustic forcing effects on the liquid column breakup length and the trajectory of liquid jets in crossflows. Cold-flow tests with a single hole circular nozzle injector were carried out by changing the injection pressure and acoustic forcing amplitude. Additionally, spray images were obtained at 12 phase angles to investigate the influence of the phage angle. The results revealed that the liquid column breakup lengths generally decreased under the acoustic forcing conditions, in comparison to those under the non-acoustic forcing conditions. However, they were not affected by the variation in the phase angles. On the contrary, it was found that the acoustic forcing hardly influenced the liquid column trajectories.

Stability of rectangular tunnel in improved soil surrounded by soft clay

  • Siddharth Pandey;Akanksha Tyagi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.491-505
    • /
    • 2023
  • The practical usage of underground space and demand for vehicular tunnels necessitate the construction of non-circular wide rectangular tunnels. However, constructing large tunnels in soft clayey soil conditions with no ground improvement can lead to excessive ground deformations and collapse. In recent years, in situ ground improvement techniques such as jet grouting and deep cement mixing are often utilized to perform cement-stabilisation around the tunnel boundary to prevent large deformations and failure. This paper discusses the stability characteristics and failure behaviour of a wide rectangular tunnel in cement-treated soft clays. First, the plane strain finite element model is developed and validated with the results of centrifuge model tests available in the past literature. The critical tunnel support pressures computed from the numerical study are found to be in good agreement with those of centrifuge model tests. The influence of varying strength and thickness of improved soil surround, and cover depth are studied on the stability and failure modes of a rectangular tunnel. It is observed that the failure behaviour of the tunnel in improved soil surround depends on the ratio of the strength of improved soil surround to the strength of surrounding soil, i.e., qui/qus, rather than just qui. For low qui/qus ratios,the stability increases with the cover; however, for the high strength improved soil surrounds with qui >> qus, the stability decreases with the cover. The failure chart, modified stability equation, and stability chart are also proposed as preliminary design guidelines for constructing rectangular tunnels in the improved soil surrounded by soft clays.