• Title/Summary/Keyword: circular frequency

Search Result 788, Processing Time 0.025 seconds

A study on the vibration characteristics of pssenger car radial tire (승용차 타이어의 진동 특성에 관한 연구)

  • 김병삼;이태근;양성모;정태진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.76-83
    • /
    • 1993
  • The vibration characteristics of radial tire are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tielking method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure are determined experimentally by using the transfer function method. Results show that material property and wear are parameter for shifting of natural frequency and damping.

  • PDF

Reconfigurable Microstrip Patch Antenna with Switchable Polarization

  • Chung, Kyung-Ho;Nam, Yong-Sik;Yun, Tae-Yeoul;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.379-382
    • /
    • 2006
  • A novel reconfigurable microstrip patch antenna with frequency and polarization diversities is proposed. A U-slot is incorporated into a square patch, and a PIN diode is utilized to switch the slot on and off, which realizes the frequency diversity characteristic. The polarization diversities among linear polarization (LP), right-hand circular polarization (RHCP), and left-hand circular polarization (LHCP) are also obtained by switching three PIN diodes on the slot and the truncating corners of a square patch on and off. The antenna design and experimental results are presented.

  • PDF

Dual-frequency circular sector patch antenna (이중 주파수 원형 섹터 패치 안테나)

  • 박동국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.812-816
    • /
    • 2001
  • In this paper we designed a dual-frequency circular sector microstrip antenna fed microstrip line with orthogonal polarization. The operating frequencies and polarization characteristics of the proposed antenna is calculated by using a cavity model. The antenna operating at about 1.87 GHz and 2.42 GHz is fabricated and its S-parameters and radiation patterns are measured.

  • PDF

An Experimental Study on the Vibraton Characteristics of a Continuous Circular Cylindrical Shell with the Multi-simple Support (다점 단순지지된 연속원통셸의 진동특성에 대한 실험적 고찰)

  • Lee, Y.S.;Han, C.H.;Kim, K.T.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.568-574
    • /
    • 2000
  • This paper presents the vibration characteristics of a continuous circular cylindrical shell multi-simply supported at arbitrary axial positions for searching design parameters. In this modal test the impulse test method is applied to the excitation of experimental model. Natural frequencies are obtained from the peak points of frequency response function(FRF) through frequency analyzer and vibration behaviors are investigated. FE analysis is performed with ANSYS 5.5 to improve the reliability of experimental results. Their results are compared with experimental results. The effect of dynamic characteristics is analyzed for the number of support point on the shell.

  • PDF

Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.521-538
    • /
    • 2020
  • The present study is concerned with the thermoelastic interactions in a two dimensional homogeneous, transversely isotropic thermoelastic solid with new modified couple stress theory without energy dissipation and with two temperatures in frequency domain. The time harmonic sources and Hankel transform technique have been employed to find the general solution to the field equations.Concentrated normal force, normal force over the circular region, thermal point source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. Numerically simulated results are depicted graphically to show the effect of angular frequency on the resulted quantities.

Design and analysis of highly selective ultrawide stopband lowpass filter using lumped and distributed equivalent circuit models

  • Pankaj Singh Tomar;Manoj Singh Parihar
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.716-726
    • /
    • 2024
  • An ultrawide stopband lowpass filter is reported using three stepped impedance resonators with high selectivity. The filter extends the stopband frequency range and attenuation, and two quarter-wave open stubs and three circular ground slots are introduced. The lumped and distributed equivalent models are derived and analyzed. The corresponding results are validated experimentally in a fabricated prototype. The prototype lowpass filter has a 3 dB cutoff frequency (fc) of 2.9 GHz, and the stopband is extended up to 35 GHz (12.07fc), with an attenuation level better than 20 dB throughout. The passband-to-stopband transition (3 dB-20 dB) bandwidth is 0.18 GHz, and the roll-off factor is 135 dB/GHz at 30 dB. The insertion loss is 0.3 dB at 1.6 GHz. The normalized circuit size of the proposed filter with respect to the guided wavelength is 0.04.

Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구)

  • Lee Jung-Yeop;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

-1 Mode Circular Polarization Antenna Design by Using Cross Aperture-Coupled Feed (십자 개구 결합 급전을 이용한 -1 모드 원형 편파 안테나)

  • Kim, Jun-Sik;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.156-163
    • /
    • 2014
  • In this paper, a compact circularly polarized metamaterial patch antenna using cross aperture-coupled feed is proposed. The CP antenna utilizes the -1 mode that is induced by the composit right-left handed(CRLH) transmission line. Since the -1 mode has the same properties with the $TM_{010}$ mode of the conventional patch antenna, the circular polarization(CP) can be realized. If two orthogonal modes are excited with $90^{\circ}$ phase difference, the CP property can be obtained. In order to obtain two orthogonal modes and $90^{\circ}$ phase difference, 4 mushroom structures having the shape of square are employed. The width and length of the cross aperture are optimized through the design algorithm. The fabricated antenna is based on RT/duroid5880 substrate and the total area of the 4 mushroom is $0.25{\lambda}_0{\times}0.25{\lambda}_0$. The center frequency of the LHCP(Left-Handed Circular Polarization) antenna is measured as 1.622 GHz and circular polarization bandwidth(3 dB) is measured as 3 MHz. The center frequency of the RHCP(Right-Handed Circular Polarization) antenna is measured as 1.609 GHz and circular polarization bandwidth (3 dB) is measured as 3 MHz, respectively. The measured radiation efficiency of LHCP antenna is 61.1 % and the measured radiation efficiency of RHCP antenna is 54.5 %.