• Title/Summary/Keyword: circular columns

Search Result 337, Processing Time 0.022 seconds

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

Experimental investigation of the stress-strain behavior of FRP confined concrete prisms

  • Hosseinpour, F.;Abbasnia, R.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.177-192
    • /
    • 2014
  • One of the main applications of FRP composites is confining concrete columns. Hence identifying the cyclic and monotonic stress-strain behavior of confined concrete columns and the parameters influencing this behavior is inevitable. Two significant parameters affecting the stress-strain behavior are aspect ratio and corner radius. The present study aims to scrutinize the effects of corner radius and aspect ratio on different aspects of stress-strain behavior of FRP confined concrete specimens (rectangular, square and circular). Hence 44 FRP confined concrete specimens were tested and the results of the tests were investigated. The findings indicated that for specimens with different aspect ratios, the relationship between the ultimate stress and the corner radius is linear and the variations of the ultimate stress versus the corner radius decreases as a result of an increase in aspect ratio. It was also observed that increase of the corner radius results in increase of the compressive strength and ultimate axial strain and increase of the aspect ratio causes an increase of the ultimate axial strain but a decrease of the compressive strength. Investigation of the ultimate condition showed that the FRP hoop rupture strain is smaller in comparison with the one obtained from the tensile coupon test and also the ultimate axial strain and confined concrete strength are smaller when a prism is under monotonic loading. Other important results of this study were, an increase in the axial strain during the early stage of unloading paths and increase of the confining effect of FRP jacket with the increase and decrease of the corner radius and aspect ratio respectively, a decrease in the slope of reloading branches with cycle repetitions and the independence of this trend from the variations of the aspect ratio and corner radius and also quadric relationship between the number of each cycle and the plastic strain of the same cycle as well as the independence of this relationship from the aspect ratio and corner radius.

A Study on the Spatial Characteristics from the "The Holy Trinity" Fresco Painted by Masaccio (마사치오의 "삼위일체" 벽화에서 나타난 공간적인 특성에 관한 연구)

  • Kim, Seok-Man
    • Journal of architectural history
    • /
    • v.22 no.6
    • /
    • pp.7-22
    • /
    • 2013
  • The purpose of this paper is to study on the spatial characteristics from the "The Holy Trinity" fresco painted by Masaccio in the early Renaissance paintings. The results of this study are as follows. 1. The elevation composition of the "The Holy Trinity" fresco is divided into the upper and lower structure through horizontal axis on horizontal line around vanishing point. The upper structure is composed of vertical axis formed through the disposition of the "Trinity" elements and horizontal axis on horizontal line. The lower structure is composed of the sarcophagus and skeleton in such inside and the altar supported through circular columns of left and right. 2. The section composition of the "The Holy Trinity" fresco is composed of the ceiling structure of cylindrical-shaped vault on upper part around basic square floor plan that is interior space and upper structure. The exterior space and lower structure is placed with sarcophagus in inner part that altar and step is projected as same height and width in the outside direction. 3. The basic floor composition of the "The Holy Trinity" fresco is planned by square shape around structural columns that is placed at corners as symmetry through transverse, longitudinal and diagonal axis. The whole floor composition planned through the altar and step that is in exterior space at front, the apse of round form at rear part and the structure of the middle story concept at interior. 4. The visual aspect of the "The Holy Trinity" fresco is composed of the stable balance in relation with distance and height because the interior and exterior space as well as the upper structure and lower structure is formed by regular proportion system. The elevation angle of visual range was planned to view in detail generally or partially the architectural composition system and element, characters through proper visual distance, center and position.

Origin and Development of the Buddhist Rock Cave Temples of India - in Relation with Hinduism, Jainism, Ajivika - (인도 불교석굴사원의 사원과 전개 - 힌두교, 자이나교, 아지빅파의 관련과 함께 -)

  • Lee, Hee-Bong
    • Journal of architectural history
    • /
    • v.17 no.4
    • /
    • pp.129-152
    • /
    • 2008
  • Early Buddhist rock cave temples of India, in spite of being an origin of Buddhist temples, has little been studied in Korea. After field studies and an interpretation of their forms in conjunction with religious life, precedent theories are supplemented and refuted as follows. Starting from the 2nd century B,C., Buddhist ascetic disciples digged residential rock caves, called vihara, for protection from monsoon rain and hot weather, A typical arrangement was settled -a courtyard type, with 3 side rows of tiny one-person bedroom and a front veranda with columns. Also digged were Chaitya caves, in line with viharas, to worship, which is the tumulus of Buddha's relics. I suggest that the original type of chaitya a simple circle cave with a stupa, suitable for circumambulating ceremonies. I refute the existing theory presenting Barabar caves of Ajivika as a chaitya origin, featuring empty circular room without a stupa. I also interpret a typical apsidal plan as being a simple result of adding a place of worshipping rites in front of the stupa. Enclosing columns around a cylindrical stupa is a result of reinforcing both the divine space and circumambulating ceremonies, with elongation toward hall. Finally the chaitya came to have a grandeur apsidal plan with high vault ceiling nave and a side aisle as in Western cathedrals with large frontal horseshoe arch windows. The Buddha image, which had become a new worshipping object, was integrated into the stupa and interior surface. First the stupa and then the statue was introduced to residential Viharas. Therefore, I suggest that the vihara should be renamed as 'chaitya' as a worshipping place, by establishing statue rooms without bedrooms at all. The functionally changed vihara is similar in form to a 'rectangular type of chaitya', little known and developed in different routes. A columned inner courtyard gradually becama an offering place, like Hindu mandapa, Buddhist caves ware changed to a kind of Tantric and Hindu temple by means of statue worshipping offering rituals.

  • PDF

Experimental Behavior of Reinforced Concrete Column-Bent Piers under Bidirectional Repeated Loading (이축반복하중을 받는 2주형 철근콘크리트 교각의 실험거동)

  • Park, Chang-Kyu;Lee, Beom-Gi;Song, Hee-Won;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.17-24
    • /
    • 2005
  • Response of reinforced concrete (RC) column-bent piers subjected to bidirectional seismic loadings was experimentally investigated. RC column-bent piers represent one of the most popular shapes of piers used in Korea highway bridges. Four column-bent piers were constructed in 400 mm diameter and 2,000 mm height. Each pier has two circular supporting columns. These piers were tested under bidirectional lateral load reversals with an axial load of $0.1f_{ck}A_g$. The test parameters included : different transverse reinforcement contents and lap-spliced longitudinal reinforcing steels. Test results indicate that the lap splice of longitudinal reinforcing steels have significantly influenced on hysteretic response of column-bent piers similar to previous test results for single columns with corresponding test parameters. Column capacity was changed with the level of transverse confinement. From the comparison of test result for single column under unidirectional loading, the damage of single column was concentrated on lower plastic hinge region but the damage of column-bent piers was scattered to upper and lower plastic hinge region.

Study on strength of reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira;Shioi, Yukitake;Iwasaki, Shoji;Miyamoto, Yutaka
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.653-677
    • /
    • 2005
  • Concrete filled steel tubular columns (CFT) are widely used in civil engineering works, especially in large scale of works because of high strength, deformation, toughness and so on. On the other hand, as a kind of strengthening measure for seriously damaged reinforced concrete piers of viaduct in Hansin-Awaji earthquake of Japan in 1995, reinforced concrete piers were wrapped with steel plate. Then, a new kind of structure appeared, that is, reinforced concrete filled steel tubular column (RCFT). In this paper, compression test and bending-shearing test on RCFT are carried out. The main parameters of experiments are (1) strength of concrete, (2) steel tube with or without rib, (3) width-thickness ratio and (4) arrangement of reinforcing bars. According to the experimental results, the effect of parameters on mechanical characteristics of RCFT is analyzed clearly. At the same time, strength evaluation formula for RCFT column is proposed and tested by experimental results and existed recommendations (AIJ 1997). The strength calculated by the proposal formula is in good agreement with test result. As a result, the proposed evaluation formula can evaluate the strength of RCFT column properly.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

A Study on the Decoration of Stone Base at Sachuwang-sa Temple (사천왕사 초석의 장식에 관한 연구)

  • Kim, Sang-Tae
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.1 s.60
    • /
    • pp.3-10
    • /
    • 2007
  • In the 7th century, Sachunwang-sa temple had two extra building-sites behind the Main hall. These two building-sites were found to be in peculiar form different from any another existing stone bases. The stone bases of northern put of these building-sites were decorated to molding as the protruding comers of eaves, which was pierced into a circular hole, and was carved into a form of Gomeck-ii(the stone bases lot supporting the wall). The northern building of sachunwang-sa temple was found to be used as the altar following munduru(文豆婁) method, through the observations of the archives of Samkukyusa(三國遺事) and the Abhiseka stura(skt. 灌頂經). The molding as the protruding cornets of eaves of stone bases was shaped as the roof of a building and the carving of Gomeck-ii gives a proof of the existence of the wall between columns in the altar. The hole of the stone bases protected the wooden cylinder of munduru from the exterior world. The author concludes, through this research, that the altar of Schunwang-sa temple was used lot the religious service during the war for worthship and protecting from the enemies. Also he concludes that these buildings must have been in wooden pagodas constructed upon a square plan, that is with both front and side width equal, haying a quite small scaled and low floored building with its first floor closed on all sides, being different item the usual form.

Evaluation of Flexural Behavior of a Modular Pier with Circular CFT (충전원형강관을 이용한 모듈러 교각의 휨 거동 평가)

  • Ma, Hyang Wook;Oh, Hyun Chul;Kim, Dong Wook;Kong, Davon;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.725-734
    • /
    • 2012
  • A new modular pier system using concrete filled circular steel tubes was suggested to realize modular bridge substructures for accelerated bridge construction. Structural details and connection details were proposed by connection multiple concrete filled tubes (CFT) for standardized products of fabrication, delivery and erection. Static tests were performed for the modular pier with suggested details under lateral load conditions for weak and strong axes. Due to the eccentricity by the bracing system, the modular pier showed 5.23 times higher flexural stiffness and 6 times greater flexural strength from the test. It is proper for the rational design to evaluate stress and deformation by frame modeling of the modular CFT pier. Structural capacity of the pier can be obtained by adjusting the spacing of the CFT columns. Design recommendations were derived from the test.

Seismic Performance of Circular Concrete Bridge Piers Externally Strengthened by Carbon Fiber Reinforced Polymer (탄소섬유강화 플라스틱(CFRP)로 보강된 원형콘크리트 교각의 지진성능 평가)

  • Catuira, Mabel;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • This paper evaluated the optimum Carbon Fiber Reinforced Polymer (CFRP) using a circular concrete bridge pier subjected to dynamic loading. A three-dimensional finite element model was simulated using finite element program, ABAQUS. Concrete Damage Plasticity (CDP) option and plastic properties of the materials were incorporated to model the non-linearity of the structure. The analyses parameters were changed in length-to-height ratio and width-to-span ratio where columns were subjected to dynamic loading. Numerical analysis was conducted, and the seismic performance of the structures were evaluated by analyzing the ductility behavior of the structure. Results showed that the use of CFRP enhances the structural performance of column and revealed that the increase in length-to-height ratio plays vital role of improving the performance of the structure than the change in width-to-span ratio.