• Title/Summary/Keyword: circuit switching

Search Result 1,982, Processing Time 0.021 seconds

Research on Power Converters for High-Efficient and Light-Weight Auxiliary Power Supplies (APS) in Railway System (철도차량 보조전원장치의 고효율-경량화를 위한 전력변환회로 연구)

  • Lee, Jae-Bum;Cho, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • A recent trend of technical development in auxiliary-power-supplies (APS) is to replace 60Hz low frequency transformers with isolated type dc/dc converters. This paper introduces the technical trend in APS structures and proposes a power converter circuit suitable for high-efficient and light-weight APS. By utilizing the resonant converter, which achieves ZCS, to reduce switching losses, various types of APS structures (1-stage and 2-stage) are reviewed, and they are verified by simulation. The full-bridge resonant LLC converter is designed with a 1-stage power converting structure; the resonant converter topology is designed with a 2-stage power converting structure that has a pre-regulator converter to compensate for the wide input voltage range. Both a step-down converter and a step-up converter are designed and compared for the pre-regulator in the 2-stage structure. Operational characteristics are compared with simulation results and loss analyses are presented to proposes appropriate system structure and topologies.

An Experimental Study on the Development and Possible Solution of Thermal Runaway Model of Electronic Moxibustion with System Error (전자뜸의 시스템 오류에 의한 열폭주 모델 구현 및 해결 방법에 관한 실험적 연구)

  • Lee, Byung Wook;Oh, Yong Taek;Jang, Hansol;Choi, Seong-Kyeong;Jo, Hyo Rim;Sung, Won-Suk;Kim, Eun-Jung
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.282-289
    • /
    • 2021
  • Objectives : The purpose of this study is to construct a model of the possible thermal runaway of electronic moxibustion and to implement an appropriate risk management method. Methods : To reproduce the system error situation of the electronic moxibustion circuit equipped with microcontroller unit, temperature sensor and heater, a code was set to disable the signal input to temperature sensor and maintain "high" heating signal to heater. The temperature change of electronic moxibustion was compared between 3 types of heater module; module 1 consisting of a combination of heater+0 ohm+0 ohm resistance, module 2 consisting of a combination of heater+Polymeric Positive Temperature Coefficient (PPTC)+0 ohm resistance, and module 3 consisting of a combination of heater+PPTC+10 ohm resistance. The temperature change was measured using a polydimethylsiloxane (PDMS) silicone phantom. After maintaining surface temperature of the phantom at 31~32℃ for 20 seconds, electronic moxibustion was applied. After operating electronic moxibustion, the temperature change was measured for 660 seconds on the surface and 900 seconds at 2 mm depth. Results : Regardless of the module type, the time-dependent change in temperature showed a rapid rise followed by a gentle curve, and a sharp drop in temperature after reaching the maximum temperature about 10 minutes after the switching the moxibustion on. Temperature measured at the depth of 2 mm below the surface increased slower and to a lesser extent. Module 1 reached highest peak temperature with largest change of temperature at both depths followed by module 2, and 3. Conclusions : Through the combination of PPTC+resistance with the heater of electronic moxibustion, it is possible to limit the rise in temperature even with the software error. Thus, this setting can be used as an independent safety measure for the electronic moxibustion control unit.