• Title/Summary/Keyword: circuit analysis

Search Result 3,936, Processing Time 0.031 seconds

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.

Output Signal Analysis for Variation of Resistance Passive Element in the R-L-C Equivalent Circuit Modeling under Temperature Accident Conditions in NPPs (원전 온도 사고 조건에서 R-L-C회로 모델링 등가 회로의 저항 수동 소자 변화에 대한 출력 신호 분석)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hee-Dong;Cho, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.600-602
    • /
    • 2006
  • Some abnormal signals diagnostics and analysis through an important equivalent circuits modeling for passive elements under severe accident conditions have been performed. Unlike the design basis accidents, there are inherently some uncertainties in the instrumentation capabilities under the accident conditions. So, the circuit simulation analysis and diagnosis methods are used to assess instruments in detail when they give apparently abnormal readings as an accident alternative method. The simulations can be useful to investigate what the signal and circuit characteristics would be when similar to a variety of symptoms that can result from the environmental conditions such as high temperature, humidity, and pressure condition. In this paper, a new simulator through an analysis of the important equivalent circuits modeling under temperature accident conditions has been designed, the designed simulator is composed of the LabVIEW code as a main tool and the out-put file of the Multi-SIM code as an engine tool is exported to in-put file of the LabVIEW code. The procedure for the simulator design was divided into two design steps, of which the first step was the diagnosis method, the second step was the circuit simulator for the signal processing tool. It has three main functions which are a signal processing tool, an accident management tool, and an additional guide from the initial screen. This simulator should be possible that it could be applied a output signal analysis to some transient signal by variation of the resistance passive elements in the R-L-C equivalent circuit modeling under various degraded conditions in NPPs.

  • PDF

Circuit Modeling and Analysis of Touch Screen Panel (터치스크린 패널의 회로 모델링 및 분석)

  • Byun, Kisik;Min, Byung-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • A simple RC circuit model of large-scale touch screen panels is developed and the frequency range of the RC model is analyzed. 2D EM simulation results of a single touch cell are cascaded for a 23 inch touch panel using a circuit simulator, and the shortest and longest channels of the full panel are modeled with a 5-element RC circuit. The 5-element RC circuit can model the touch screen panel upto 130 kHz with the channel phase error of $10^{\circ}$. 7-element RC circuit model is also proposed and the frequency range for the channel phase error of $10^{\circ}$ is extended to 200 kHz.

Analysis and Alternative Circuit Design of Pneumatic Circuit for An Automotive Air Suspension (자동차 공기현가 공압회로 해석 및 대체회로 설계)

  • Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.17-25
    • /
    • 2008
  • This study presents an analytical model of the pneumatic circuit of an air suspension system to analyze the characteristics of vehicle height control. The analytical model was developed through the co-simulation of Simulink(air spring) and HyPneu(pneumatic circuit). Variant effective area of air spring and flow coefficients of pneumatic valves were estimated experimentally prior to the system test, and utilized in simulation. One-comer test apparatus was established using the components of commercial air suspension products. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the frictional loss of conduit and heat dissipation which were ignored in this study need to be considered in future study. As an application example of proposed analytical model, an alternative pneumatic circuit of air suspension to conventional WABCO circuit was evaluated. The comparison of simulation results of WABCO circuit and alternative circuit show that proposed analytical model of co-simulation in this study is useful for the study of pneumatic system of automotive air suspension.

  • PDF

The Effects of Task-Related Circuit Training by Type of Dual Task on the Gait of Chronic Stroke Patients (이중 과제유형에 따른 순환 과제훈련이 만성뇌졸중 환자의 보행수행 능력에 미치는 영향)

  • Kim, Hyeun-Ae;Seo, Kyo-Chul
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.407-415
    • /
    • 2013
  • PURPOSE: This study is to examine the effects of different types of tasks on gait functions of chronic stroke patients when different types of dual tasks were applied while the patients were implementing practical and continuous circuit tasks using their upper and lower extremities circulating many workbenches. METHODS: Forty-four chronic stroke patients were divided into a dual motor circuit task training group, a dual cognitive circuit task training group and a simple task training group. Before training, all the patients were identically encouraged to receive conservative physical therapy for 30 minutes by a physical therapist were thereafter made to train for 30 minutes, five times a week for a total of eight weeks with individual additional tasks. The dual motor circuit task training consisted of continuous circuit training motor tasks and additional motor tasks and the dual cognitive circuit task training consisted of tasks combining the same circuit training motor tasks and additional cognitive tasks. The simple task training consisted of natural walks on a flat terrain to the front, rear and lateral sides of the terrain. Changes in functional gait abilities made through the training were evaluated using GAITRite. SPSS Win 12.0 was used for the data analysis. RESULTS: As for the gait variables that showed significant differences in comparison between the groups over the training period, the dual motor circuit task training group showed more significant differences than the dual cognitive circuit task training group and the simple task training group at 4 weeks and 8 weeks of training(p<.05). CONCLUSION: Therefore, it could be seen that the practical and continuous dual circuit task training was more effective than simple task training on gait. In comparison between the types of dual tasks, the dual motor circuit task training group showed more effects than the dual cognitive circuit task training group.

A Study on the Characteristics of Short Circuit through the Cross Section Analysis of Electric Wire (전선의 단면분석을 통한 단락특성에 관한 연구)

  • Shong, Kil-Mok;Choi, Chung-Seog;Kim, Yun-Hoi;Kim, Sang-Hyeon;Park, Nam-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.51-56
    • /
    • 2005
  • For a fire cause judgement this paper describes the short circuit characteristics of a electric wire through the cross section analysis under ac condition. The cower wires prepared for the experiment were 1.2mm, 1.6mm, and 2.0mm in diameter. Through the cross section analysis(CSA), it was confirmed that the dendrite structure grew at the angle of about $40^{\circ}\;or\;60^{\circ}$ when the fusing current was applied to the wires. The larger the fusing current is, the more decreased the growth angle of the dendrite structure is. It was confirmed that the dendrite structure was arranged like the columnar structure. In this paper, the characteristics analysis of short circuit was carried out in the range of transient duration and the correlation constant k was investigated by measuring the short circuit duration and the fusing current.

  • PDF

FREQUENCY-TEMPERATURE CHARACTERISTIC ANALYSIS OF PIEZOELECTRIC RESONATORS USING FINITE ELEMENT MODELING

  • Wakatsuki, N.;Tsuchiya, T.;Kagawa, Y.;Suzuki, K.
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.215-219
    • /
    • 2001
  • The resonators made of piezoelectric crystals such as a quartz crystal are widely used. Their frequency-temperature characteristics are of primary importance for their applications to the frequency control devices. The characteristics estimation is useful for determining their design parameters. In the present paper, several types of resonators are numerically analyzed. The numerical solutions are made using 3-D Finite Element Modeling, and the results are compared with the theoretical values whenever they are available. To demonstrate the validity of the present numerical approach, the application is made to the analysis of the plates with some well-established cutting angles. For the resonator stable with temperature change, the cutting angle is important in which the temperature coefficient of the first order is chosen to be zero. The rotated Y-cut plates in thickness-shear mode are considered. The equivalent circuit representation is often used fur describing the characteristics at the electrical terminals which enables the circuit analysis including the effect of temperature change by using the circuit simulators. The equivalent circuit parameters are obtained by fitting the admittance-frequency curve from the finite element analysis.

  • PDF

Equivalent Circuit Analysis of the Multi-functional Device for Mobile Telephones (휴대폰용 복합소자의 등가회로 해석)

  • 이영진;윤양기;임종인;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.54-60
    • /
    • 2001
  • This paper investigates the equivalent circuit analysis method for the multi-functional device in mobile telephones, which works both as a buzzer and a vibrator in a single unit form. With a representative multi-functional device, we construct the corresponding equivalent circuits for the buzzer mode and the vibrator mode of the device, respectively, and analyze the performance of each of the modes. For proper construction of the circuit, we analyze the structure and operation mechanism of the device, and develop a computer simulation tool to simulate the behavior of the device. Validity of the analysis method is verified through comparison of the analysis results with experimental measurement results, which shows good agreement between the two sets of data.

  • PDF

Analysis of continuous conduction mode boost power-factor-correction circuit (부스트 방식 역률개선회로의 설계와 특성분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Kim, Sang-Duck;Song, Yo-Chang;Yoon, Shin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1120-1122
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor improvement and harmonic reduction technique is very important in switching power supply. The power factor correction (PFC) circuit using boost converter used in input of power source is studied in this paper. It is analyzed distortional situations and harmonics of input currents that presented at continuous conduction mode(CCM) of boost PFC circuit. It is done simulations of harmonics distribution according to load variation by using PSPICE and MATLAB. From the actual experiment of boost PFC circuit the validity of the analysis is confirmed.

  • PDF