• Title/Summary/Keyword: circuit QED

Search Result 2, Processing Time 0.014 seconds

A brief review on recent developments of superconducting microwave resonators for quantum device application

  • Chong, Yonuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.40-43
    • /
    • 2014
  • Quantum information processing using superconducting qubit based on Josephson junction has become one of the most promising candidates for possible realization of a quantum computer. In the heart of the qubit circuits, the superconducting microwave resonator plays a key role in quantum operations and measurements, which enables single-photon level microwave quantum optics. During last decade, the coherence time, or the lifetime of the quantum state, of the superconducting qubit has been dramatically improved. Among several technological innovations, the improvement of superconducting microwave resonator's quality has been the main driving force in getting the qubit performance almost ready for elementary quantum computing architecture. In this paper, I will briefly review very recent progresses of the superconducting microwave resonators especially aimed for quantum device applications during the last decade. The progresses have been driven by ingenious circuit design, material improvement, and new measurement techniques. Even a rather radical idea of three-dimensional large resonators have been successfully implemented in a qubit circuit. All those efforts contributed to our understanding of the qubit decoherence mechanism and as a result to the improvement of qubit performance.