• Title/Summary/Keyword: ciliates

Search Result 172, Processing Time 0.019 seconds

Differentiation of Some Environmental Factors and Planktonic Communities of the Two Areas Divided by the Breakwater Between Youngdo and Jodo, Busan (부산시 영도와 조도사이의 방파제 양측 해역의 환경요소 및 부유생물상의 차이에 관하여)

  • MIN Byoung Seo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.243-258
    • /
    • 1977
  • 1 The coastal area between Youngdo and Jodo was a common coastal water not much different from other coastal waters before the construction of the breakwater between them. 2. The breakwater between the two islands shuts off the tidal currents and divides the area . into the two small isolated bays to create quite different environments. 3. To understand the differences between then, present study examined some environmental factors such as water temperature, salinity, dissolved oxygen, transparency, and major nutrients, phosphates, sillicates and nitrites and the phytoand zooplankton. The samplings were carried out monthly from March 1976 to February 1977 at 4 stations: 2 stations in each bay. 4. Some differences were observed in the environmental factors such as water temperature, salinity, dissolved oxygen and transparency between the two bays. 5. The distribution and occurence of nutrient salts of the two bays were distinctly different each other. Northern Bay had $138\%$ of nutrients in comparison with Southern Bay. 6. Phytoplankton in Northern Bay was about $200\%$ plentier than in Southern Bay. 7. Zooplankton in Southern Bay was about $180\%$ richer than in Northern Bay. 8. One of the pollution indicator species, Synedra ulna, was observed in Northern Bay and the occurence of Euglena sp. and ciliates were much higher in Northern Bay than in Southern Bay, but, in contrast, Sagitta sp. was more abundant in Southern Bay than in the other. 9. The areas of the two bays seem to be in its way to eutrophication especially in Northern Bay. 10. The two bays have been differentiated enough to identify each other.

  • PDF

Short-term Variations in Community Structure of Phytoplankton and Heterotrophic Protozoa during the Early Fall Phytoplankton Blooms in the Coastal Water off Incheon, Korea (인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동)

  • Yang, Eun-Jin;Choi, Joong-Ki
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.101-112
    • /
    • 2007
  • In order to examine the short-term variations of phytoplankton and heterotrophic protozoa community structures with bloom events, water samples were collected every other day at one site in the coastal water off Incheon, Korea, from August 15-September 30, 2001. $Chlorophyll-{\alpha}$ concentrations varied widely from 1.8 to $19.3\;{\mu}g\;l^{-1}$ with the appearances of two major peaks of $Chlorophyll-{\alpha}$ concentration during the study period. Size-fractionated $Chlorophyll-{\alpha}$ concentration showed that net-size fraction ($>20\;{\mu}m$) comprised over 80% of total $Chlorophyll-{\alpha}$ during the first and second bloom periods, nano-size fraction ($3{\sim}20\;{\mu}m$) comprised average 42% during the pre- (before the first bloom) and post-bloom periods (after the second bloom), and pico- size fraction ($<3\;{\mu}m$) comprised over 50% during inter-bloom periods (i.e. between the first and second bloom periods). Dominant phytoplankton community was shifted from autotrophic nanoflagellates to diatom, diatom to picophytoplankton, picophytoplankton to diatom, and then diatom to autotrophic nanoflagellates, during the pre-, the first, the inter, the second, and the post-bloom periods, respectively. During the blooms, Chaetoceros pseudocrinitus and Eucampia zodiacus were dominant diatom species composed with more than 50% of total diatom. Carbon biomass of heterotrophic protozoa ranged from 8.2 to $117.8\;{\mu}gC\;l^{-1}$ and showed the highest biomass soon after the peak of the first and second blooms. The relative contribution of each group of the heterotrophic protozoa showed differences between the bloom period and other periods. Ciliates and HDF were dominant during the first and second bloom periods, with a contribution of more than 80% of the heterotrophic protozoan carbon biomass. Especially, different species of HDF, thecate and athecate HDF, were dominant during the first and the second bloom periods, respectively. Interestingly, Noctiluca scintillans appeared to be one of the key organisms to extinguish the first bloom. Therefore, our study suggests that heterotrophic protozoa could be a key player to control the phytoplankton community structure and biomass during the study period.