• Title/Summary/Keyword: chromosome analysis

Search Result 877, Processing Time 0.027 seconds

A Cytogenetic Study of Amenorrhea (무월경 환자의 세포유전학적인 연구)

  • Lee, Kyung-Soon;Han, Jung-Ho;Moon, Shin-Yong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.467-474
    • /
    • 1999
  • Objectives: Cytogenetic investigations were carried out on 770 women with primary (n=560) and secondary amenorrhea (n=210) to determine the frequency of chromosomal or genetic causes of amenorrhea. Materials and Methods: In 770 women with primary amenorrhea (n=560) and secondary amenorrhea (n=210), chromosomal analysis were performed. Results: 1) The most prevalent age group is 16-20 years of age group with primary amenorrhea and 26-30 years of age group with secondary amenorrhea. 2) Out of 560 cases of primary amenorrhea, 343 cases (61.3%) had the normal chromosome constitution and 217 cases (38.7%) had the abnormal chromosome constitution including 46,XY. 3) In 217 cases of abnormal chromosome of primary amenorrhea, 57 cases (26.3%) had 45,X and 34 cases (15.8%) had the 46,XY, 24 cases (11.0%) had 45,X/46,X,i (Xq), 23 cases (10.6%) had 45,X/46,X,+mar and 14 cases (6.6%) had 45,X/46,XY. 4) Out of 210 cases of secondary amenorrhea, 181 cases (86.2%) had the normal chromosome constitution and 29 cases (13.8%) had the abnormal chromosome. 5) In 29 cases of abnormal chromosome of secondary amenorrhea, 7 cases (24.1%) had 45,X/46, X,i (Xq), 4 cases (13.8%) had 45,X/46,XX. Conclusion: High percentage of chromosomal abnormalities was diagnosed in primary amenorrhea and most of them were sex chromosome anomalies. In secondary amenorrhea, the prevalence was lower than primary amenorrhea, so a preselection of patients with secondary amenorrhea for cytogenetic investigations seems to be necessary.

  • PDF

Molecular Analysis of the Y Chromosome in a 46,XY Female Phenotype

  • Kim, Jin-Woo;Kim, Tae-Jin;Park, So-Yeon;Nam, Sung-A;Jun, Jong-Young
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 1999
  • This is a case report of 46,XY female phenotype (46,XY karyotype, no pubic hair, blind vagina and absence of uterus)in an 18-year-old patient. To confirm whether a Y chromosome has a structural abnormality, fluorescent in situ hybridization (FISH) with the chromosome X/Y cocktail probe was simultaneously performed, and the six loci [PABY, RPS4Y(sy16, sy17), ZFY, DYS14] on the short arm, one locus (DYZ3) on the centromere and one locus (DYZ1) on the long arm were amplified by polymerase chain reaction (PCR). The probes used FISH hybridized to centromere of the X chromosome and heterochromatin region (Yq12) of the Y chromosome, and all PCR related Y chromosome showed positive band like normal male. From the results obtained, it seemed that the Y chromosome from the 46,XY female was structurely normal. Especially, the SRY gene has been equated with the mammalian testis-determining factor, and absence or point mutation in the SRY gene causes XY female. To detect the point mutations of SRY sequences, single-strand conformation polymorphism (SSCP) assay was used. Our results confirm that this patient has no mutation in the SRY gene on the Y chromosome.

  • PDF

Analysis of radiation-induced micronuclei and aneuploidy involving chromosome 1 and 4 by FISH technique (FISH 기법을 이용한 방사선에 의한 소핵과 이수성 분석)

  • Chung, Hai-Won;Kim, Tae-Yon;Cho, Yoon-Hee;Kim, Su-Young;Kang, Chang-Mo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.243-249
    • /
    • 2004
  • The cytokinesis-block micronucleus (CBMN) assay in combination with FISH technique using chromosome-specific centromeric probes for chromosome 1 and 4 was performed in mitogen stimulated human lymphocytes which were exposed to x-radiation to identify different sensitivity of chromosomes to the induction of micronuclei(MN) and aneuploidy by radiation. The frequencies of micronucleated cytokinesis-blocked(MNCB) cells and MN in binucleated lymphocytes(BN) increased with the increase in radiation dose. A significant induction of aneuploidy of chromosome 1 and 4 were found. The frequency of aneuploidy of chromosome 1 and 4 in the control were 9 per 2,000 BN cells and this increased to 47 and 71 following irradiation at a dose of 1 and 2 Gy, respectively. The induction of aneuploidy of chromosome 1 was higher than that of chromosome 4. The frequency of aneuploid BN cells with MN exhibiting positive centromere signal for either chromosome 1 and/or 4 increased in a dose dependent manner, and that for chromosome 1 is higher than that for chromosome 4. Among the total induced MN in irradiated lymphocytes, smaller proportion of MN exhibit centromeric signal of chromosome indicating that radiation-induced MN are mainly originated from chromosomal breakage rather than chromosomal non-disjunction. These results suggest that x-radiation can induce aneuploidy and supports the finding that chromosome vary in their sensitivity to aneuploidy induction by x-irradiation.

Prenatal diagnosis of a de novo ring chromosome 11

  • Park, Ju-Yeon;Lee, Moon-Hee;Lee, Bom-Yi;Lee, Yeon-Woo;Ryu, Hyun-Mee;Park, So-Yeon
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.80-83
    • /
    • 2007
  • A 36-year-old pregnant woman was referred for amniocentesis at 19.5 weeks gestation because of advanced maternal age and evidence of increased risk for Edward syndrome in the maternal serum screening test. Cytogenetic analysis of the cultured amniotic fluid cells revealed mosaicism for ring chromosome 11: 46,XX,r(11)[65]/ 45,XX,-11[16]/ 46,XX [34]. Parental karyotypes were normal. A targeted ultrasound showed intrauterine grow th restriction (IUGR). Cordocentesis was performed to characterize the ring chromosome and to rule out tissue specific mosaicism. Karyotype was confirmed as 46,XX,r(11) (p15.5q24.2)[229]/45,XX,-11[15]. And a few new form of ring w ere detected in this culture. The deletion of subtelomeric regions in the ring chromosome were detected by fluorescent in situ hybridization (FISH). The pregnancy was terminated. The fetal autopsy showed a growth-retarded female fetus with rocker bottom feet. We report a case of prenatally detected a de novo ring chromosome 11.

  • PDF

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

Comparison of Sexing Analysis between Karyotyping and Blasomere-PCR in Bovine embryos

  • Chang, Suk-Min;Lee, Jong-Ho;Park, Joong-Hoon;Park, Wha-Sik;Park, Chang-Sik;Jin, Dong-Il
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.92-92
    • /
    • 2003
  • Accurate analysis of nuclear status is needed when biopsied-blastomeres are used for embryo sexing. In this study, the nuclear status of blastomeres derived from 8- to 16-cell stage IVF bovine embryos was analyzed to evaluate the representative of single blastomere for embryo sexing. When 55 embryos were analyzed by PCR following biopsy, the coincident rate of sex determination between biopsied-single blastomere and matched blastocyst by PCR was 80 %. Karyotyping of biastomeres in 8- 16-cell stage bovine embryos was conducted to assess chromosome status of IVF embryos. To establish karyotyping of blastomeres, concentrations of vinblastine sulfate and duration of exposure time for metaphase plate induction with 8- to 16-cell stage bovine embryos were tested. The most effective condition for induction of metaphase plate (>45%) was 1.0 ug/ml vinblastine sulfate treatment for 15 h. In 22 embryos under the condition, only 8 embryos out of ten that had a normal diploid chromosome complement showed a sex-chromosomal composition of XX or XY (36.4%) and 2 diploid embryos showed mosaicism of the opposite sex of XX and XY in blastomeres of embryo (9.1%). One haploid embryo contained only one X-chromosome (4.5%). Four out of the other 11 embryos having a mixoploid chromosomal complement contained haploid blastomere with wrong sex chromosome (18.2%). These results suggested that morphologically normal bovine embryos derived from IVF had considerable proportion of mixoploid and sex-chromosomal mosaicism which could be the cause of discrepancies of the sex between biopsied-single blastomere and matched blastocyst by PCR analysis.

  • PDF

Prenatal diagnosis of an unbalanced translocation between chromosome Y and chromosome 15 in a female fetus

  • Lee, Dongsook;Park, Heeju;Kwak, Sanha;Lee, Soomin;Go, Sanghee;Park, Sohyun;Jo, Sukyung;Kim, Kichul;Lee, Seunggwan;Hwang, Doyeong
    • Journal of Genetic Medicine
    • /
    • v.13 no.2
    • /
    • pp.95-98
    • /
    • 2016
  • We report the prenatal diagnosis of an unbalanced translocation between chromosome Y and chromosome 15 in a female fetus. Cytogenetic analysis of parental chromosomes revealed that the mother had a normal 46,XX karyotype, whereas the father exhibited a 46,XY,der(15)t(Y;15) karyotype. We performed cytogenetic analysis of the father's family as a result of the father and confirmed the same karyotype in his mother and brother. Fluorescence in situ hybridization and quantitative fluorescent-polymerase chain reaction analysis identified the breakpoint and demonstrated the absence of the SRY gene in female members. Thus, the proband inherited this translocation from the father and grandmother. This makes the prediction of the fetal phenotype possible through assessing the grandmother. Therefore, we suggest that conventional cytogenetic and molecular cytogenetic methods, in combination with family history, provide informative results for prenatal diagnosis and prenatal genetic counseling.

A Case of 21-Monosomy with Holoprosencephaly(Semilobar Type) (Holoprosencephaly를 동반한 21-Monosomy 1례)

  • Lee, So Young;Cho, Sung Min
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.831-835
    • /
    • 2003
  • Holoprosencephaly of unknown definite causes, has been associated with several chromosome abnormalities involving the autosomes and the sex chromosomes. The most commonly reported associations include dup(3p), del(7q), deletions of chromosome 13, trisomy 13, trisomy 18, and triploidy. In previously reported cases in Korea, none were associated with chromosome 21 anomalies. In conclusion, we reported the first case of holoprosencephaly(semilobar type) associated with pure monosomy 21. We experienced a semilobar type holoprosencephaly with monosomy 21 in a neonate who had multiple congenital anomalies, including an abnormal face, a small thorax with widely spaced hypoplastic nipples and nail hypoplasia, lung hypoplasia with severe scoliosis and cardiac abnormalities. Chromosomal analysis revealed a 45, XY, -21.