• Title/Summary/Keyword: chorismate biosynthesis

Search Result 4, Processing Time 0.018 seconds

Biosynthesis of Two Hydroxybenzoic Acid-Amine Conjugates in Engineered Escherichia coli

  • Kim, Song-Yi;Kim, Han;Kim, Bong-Gyu;Ahn, Joong-Hoonc
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1636-1643
    • /
    • 2019
  • Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and N-2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using Escherichia coli. While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (ubiC), tyrosine decarboxylase (TyDC), isochorismate synthase (entC), isochorismate pyruvate lyase (pchB), and tryptophan decarboxylase (TDC) for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in E. coli. Genes for CoA ligase (hbad) and amide formation (CaSHT and OsHCT) were also introduced to form hydroxybenzoic acid and amine conjugates. In addition, we engineered E. coli to provide increased substrates. These approaches led to the yield of 259.3 mg/l 4-HBT and 227.2 mg/l 2-HBT and could be applied to synthesize diverse bioactive hydroxybenzoyl amine conjugates.

Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from Corynebacterium glutamicum

  • Chan Hwi Lee;Sangwoo Kim;Hogyun Seo;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1595-1605
    • /
    • 2023
  • Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.

Development of the feedback resistant pheAFBR from E. coli and studies on its biochemical characteristics (E. coli 유래 pheA 유전자의 되먹임제어 저항성 돌연변이의 구축과 그 단백질의 생화학적 특성 연구)

  • Cao, Thinh-Phat;Lee, Sang-Hyun;Hong, KwangWon;Lee, Sung Haeng
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The bifunctional PheA protein, having chorismate mutase and prephenate dehydratase (CMPD) activities, is one of the key regulatory enzymes in the aromatic amino acid biosynthesis in Escherichia coli, and is negatively regulated by an end-product, phenyalanine. Therefore, PheA protein has been thought as useful for protein engineering to utilize mass production of essential amino acid phenylalanine. To obtain feedback resistant PheA protein against phenylalanine, we mutated by using random mutagenesis, extensively screened, and obtained $pheA^{FBR}$ gene encoding a feedback resistant PheA protein. The mutant PheA protein contains substitution of Leu to Phe at the position of 118, displaying that higher affinity (about $290{\mu}M$) for prephenate in comparison with that (about $850{\mu}M$) of wild type PheA protein. Kinetic analysis showed that the saturation curve of $PheA^{FBR}$ against phenyalanine is hyperbolic rather than that of $PheA^{WT}$, which is sigmoidal, indicating that the L118F mutant enzyme has no cooperative effects in prephenate binding in the presence of phenylalanine. In vitro enzymatic assay showed that the mutant protein exhibited increased activity by above 3.5 folds compared to the wild type enzyme. Moreover, L118F mutant protein appeared insensitive to feedback inhibition with keeping 40% of enzymatic activity even in the presence of 10 mM phenylalanine at which the activity of wild type $PheA^{WT}$ was not observed. The substitution of Leu to Phe in CMPD may induce significant conformational change for this enzyme to acquire feedback resistance to end-product of the pathway by modulating kinetic properties.

Characterization of SID2 that is required for the production of salicylic acid by using β-GLUCURONIDASE and LUCIFERASE reporter system in Arabidoposis (리포트 시스템을 이용한 살리실산 생합성 유전자 SID2의 발현 해석)

  • Hong, Mi-Ju;Cheong, Mi-Sun;Lee, Ji-Young;Kim, Hun;Jeong, Jae-Cheol;Shen, Mingzhe;Ali, Zahir;Park, Bo-Kyung;Choi, Won-Kyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Salicylic acid(SA) is a phytohormone that is related to plant defense mechanism. The SA accumulation is triggered by abiotic and biotic stresses. SA acts as a signal molecular compound mediating systemic acquired resistance and hypersensitive response in plant. Although the role of SA has been studied extensively, an understanding of the SA regulatory mechanism is still lacking in plants. In order to comprehend SA regulatory mechanism, we have been transformed with a SID2 promoter:GUS::LUC fusion construct into siz1-2 mutant and wild plant(Col-0). SIZ1 encodes SUMO E3 ligase and negatively regulates SA accumulation in plants. SID2(SALICYLIC ACID INDUCTION DEFICIENT2) is a crucial enzyme of SA biosynthesis. The Arabidopsis SID2 gene encodes isochorismate synthase(ICS) that controls SA level by conversion of chorismate to isochorismate. We compared the regulation of SID2 in wild-type and siz1-2 transgenic plants that express SID2 promoter:GUS::LUC constructs respectively. The expressions of $\beta$-GLUCURONIDASE and LUCIFERASE were higher in siz 1-2 transgenic plant without any stress treatment. SID2 promoter:GUS::LUC/siz1-2 transgenic plant will be used as a starting material for isolation of siz1-2 suppressor mutants and genes involved in SA-mediated stress signaling pathway.