• Title/Summary/Keyword: chord-length method

Search Result 82, Processing Time 0.028 seconds

Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface (베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.140-150
    • /
    • 2004
  • In this study, the effect of relative position of the blade for the fixed vane has been investigated on blade surface heat transfer. The experiments were conducted in a low speed stationary annular cascade, and heat transfer of blade was examined for six positions within a pitch. Turbine test section has one stage composed of sixteen guide vanes and blades. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is about $2.5\%$ of the blade chord. For the detailed mass transfer measurements on the blade surfaces, a naphthalene sublimation technique was used. The inlet flow Reynolds number is fixed to $1.5{\times}10^5$. Complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as separation bubble, relaminarization, transition to turbulence and leakage vortices. The distributions of velocity and turbulence intensity change significantly with the relative position due to the blockage effect of the blade. This causes the variation of heat transfer patterns on the blade surface. The results show that the flow near the leading edge get highly disturbed and deflected toward the either side of the blade when the blade leading edge is positioned close to the trailing edge of the vane. Therefore, separation bubble disappears on the pressure side and overall heat transfer on the relaminarization region is increased. But, due to reduced tip gap flow at the upstream region, the effect of leakage flow on the upstream region of the blade surface is weakened. Thus, the heat transfer characteristics significantly change with the blade positions.

  • PDF

CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS (HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석)

  • Sa, J.H.;You, Y.H.;Park, J.S.;Park, S.H.;Jung, S.N.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

Aerodynamic Design and Analysis of a Propeller for a Micro Air Vehicle

  • Cho Lee-Sang;Yoon Jae-Min;Han Cheol-Heui;Cho Jin-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1753-1764
    • /
    • 2006
  • A U-80 propeller and its modified version, U-75 propeller, are used for a micro air vehicle. The performance characteristics of a U-80 propeller and a U-75 propeller have not much known in the published literature. Thus, their aerodynamic characteristics are investigated using a lifting surface numerical method. The lifting surface method is validated by comparing computed results with measured data in a wind tunnel. From the computed results, it is found that the U-75 propeller produces larger thrust with higher efficiency than the U-80 propeller. To enhance the performance of these propellers, a new propeller is designed by following the sequential design procedures with the design parameters such as hub-tip ratio, maximum camber and its position, and chord length distribution along the radial direction. The performance of the designed propeller is shown to be improved much comparing with those of both the U-80 and U-75 propellers.

Astronomical Characteristics of Cheonsang-yeolcha-bunyajido from the Perspective of Manufacturing Methods

  • Ahn, Sang-Hyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.51-62
    • /
    • 2015
  • I investigated a method for drawing the star chart in the planisphere Cheonsang-yeolcha-bunyajido. The outline of the star chart can be constructed by considering the astronomical information given in the planisphere alone and the drawing method described in Xin-Tangshu; further the chart can be completed by using additional information on the shape and linking method of asterisms out of an inherited star chart. The circles of perpetual visibility, the equator, and the circle of perpetual invisibility are concentric, and their common center locates the Tianshu-xing, which was defined to be a pole star in the Han dynasty. The radius of the circle of perpetual visibility was modified in accordance with the latitude of Seoul, whereas the other circles were drawn for the latitude of $35^{\circ}$, which had been the reference latitude in ancient Chinese astronomy. The ecliptic was drawn as an exact circle by parallel transference of the equator circle to fix the location of the equinoxes at the positions recorded in the epitaph of the planisphere. The positions of equinoxes originated from the Han dynasty. The 365 ticks around the boundary of the circle of perpetual invisibility were possibly drawn by segmenting the circumference with an arc length instead of a chord length with the ratio of the circumference of a circle to its diameter as accurate as 3.14 presumed. The 12 equatorial sectors were drawn on the boundary of the star-chart in accordance with the beginning and ending lodge angles given in the epitaph that originated from the Han dynasty. The determinative lines for the 28 lunar lodges were drawn to intersect their determinative stars, but seven determinative stars are deviated. According to the treatises of the Tang dynasty, these anomalies were inherited from charts of the period earlier than the Tang dynasty. Thus, the star chart in Cheonsang-yeolcha-bunyajido preserves the old tradition that had existed before the present Chinese tradition reformed in approximately 700 CE. In conclusion, the star chart in Cheonsang-yeolcha-bunyajido shows the sky of the former Han dynasty with the equator modified to the latitude of Seoul.

Performance Improvement Method of an Axial Fan Using Simulation (시뮬레이션을 이용한 축류팬 성능 개선 방법)

  • Lim, Hyo Mok;Yun, Dong Gyu;Yim, Choong Hyuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.137-143
    • /
    • 2017
  • An axial fan has competitive advantages that can make air flow more straight and longer and produce larger air volume than the other kinds of fans. In those reasons, axial fans are widely used for ventilator, 4D cinema, duct, and so on. But, as it was designed and manufactured without any mathematical analysis or computer simulations, it is difficult to develop the performance of axial fans. Actually the axial fan is designed and manufactured in industry by imitation or traditional method. Flow velocity and volume of axial fan are changed by pitch angle, frame, the number of blade, camber angle, and chord length. In this paper, the performance of axial fan was analyzed and by computer program known as CFD. Finally, we have designed a new axial fan whose velocity and volume is improved. The performance of new axial fan is also compared with the of conventional fans experimentally.

Aerodynamic Noise Analysis of High Speed Wind Turbine System for Design Parameters of the Rotor Blade (고속 회전 풍력 시스템의 로터 설계 인자에 따른 공력 소음 해석 연구)

  • Lee, Seung-Min;Kim, Ho-Geon;Son, Eun-Kuk;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.521-524
    • /
    • 2009
  • This study describes aerodynamic noise of high speed wind turbine system, which is invented as a new concept in order to reduce the torque of main shaft, for design parameters of the rotor blade. For parametric study of high speed rotor aerodynamic noise, Unsteady Vortex Lattice Method with Nonlinear Vortex Correction Method is used for analysis of wind turbine blade aerodynamic and Farassat1A and Semi-Empirical are used for low frequency noise and airfoil self noise. Parameters are chord length, twist and rotational speed for this parametric research. In the low frequency range, the change of noise is predicted the same level as each parameters varies. However, in case of broadband noise of blade, the change of rotational speed makes more variation of noise than other parameters. When the geometric angles of attack are fixed, as the rotational speed is increased by 5RPM, the noise level is increased by 4dB.

  • PDF

Fatigue crack growth and remaining life estimation of AVLB components

  • Chen, Hung-Liang Roger;Choi, Jeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.651-674
    • /
    • 2006
  • The fatigue cracks initiate and propagate in the Armored Vehicle Launch Bridge (AVLB) components, especially like the splice doubler angle, splice plate, and bottom chord, due to the cyclic loading by repeated AVLB-launchings and tank-crossings. In this study, laboratory fatigue tests were conducted on six aluminum 2014-T6, four aluminum 7050-T76511, and four ASTM A36 steel compact-tension specimens to evaluate the crack growth behavior of the materials used for the components. The experimental results provide the relationship (Paris Law) between crack growth rate, da/dn, and stress intensity range, ${\Delta}K$, whose material dependent constants C and m can later be used in the life estimation of the components. Finite Element Method (FEM) was used to obtain the stress intensity factor, K, of the components with cracks. Because of the complexity of loading conditions and component geometry, several assumptions and simplifications are made in the FEM modeling. The FEM results, along with the results obtained from laboratory fatigue tests, are then utilized to estimate critical crack length and remaining life of the components.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Performance Characteristics of the Double-Inlet Centrifugal Blower according to the Shape of an Impeller (임펠러 형상에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an impeller. Two design variables, a number of blade and a length of chord, are introduced, and analyzed by a response surface method. Three-dimensional compressible Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. Throughout the numerical simulation of the blower, blower efficiency can be increased by reducing separation flow generating from the blade leading edge of a blade pressure surface. It is noted that recirculation flow observed inside the blade passage induces low velocity region, thus increases pressure loss. Efficiency and pressure of the optimum blower are successfully increased up to 3% and 3.9% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

Autonomous Calibration of a 2D Laser Displacement Sensor by Matching a Single Point on a Flat Structure (평면 구조물의 단일점 일치를 이용한 2차원 레이저 거리감지센서의 자동 캘리브레이션)

  • Joung, Ji Hoon;Kang, Tae-Sun;Shin, Hyeon-Ho;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.218-222
    • /
    • 2014
  • In this paper, we introduce an autonomous calibration method for a 2D laser displacement sensor (e.g. laser vision sensor and laser range finder) by matching a single point on a flat structure. Many arc welding robots install a 2D laser displacement sensor to expand their application by recognizing their environment (e.g. base metal and seam). In such systems, sensing data should be transformed to the robot's coordinates, and the geometric relation (i.e. rotation and translation) between the robot's coordinates and sensor coordinates should be known for the transformation. Calibration means the inference process of geometric relation between the sensor and robot. Generally, the matching of more than 3 points is required to infer the geometric relation. However, we introduce a novel method to calibrate using only 1 point matching and use a specific flat structure (i.e. circular hole) which enables us to find the geometric relation with a single point matching. We make the rotation component of the calibration results as a constant to use only a single point by moving a robot to a specific pose. The flat structure can be installed easily in a manufacturing site, because the structure does not have a volume (i.e. almost 2D structure). The calibration process is fully autonomous and does not need any manual operation. A robot which installed the sensor moves to the specific pose by sensing features of the circular hole such as length of chord and center position of the chord. We show the precision of the proposed method by performing repetitive experiments in various situations. Furthermore, we applied the result of the proposed method to sensor based seam tracking with a robot, and report the difference of the robot's TCP (Tool Center Point) trajectory. This experiment shows that the proposed method ensures precision.