• Title/Summary/Keyword: chord distribution

Search Result 75, Processing Time 0.024 seconds

A Numerical Study on the Effect of Blade Shapes on the Performance of the Propeller-type Submersible Mixers (날개형상이 프로펠러형 수중믹서의 성능에 미치는 영향에 관한 수치적 연구)

  • Choi, Y. S.;Lee, J. H.;Kim, S. I.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.31-35
    • /
    • 2000
  • In this research, the performance predictions of the submersible mixer were investigated. The variation of the performance characteristics by changing the impeller design parameters were discussed through the flow calculation results by using a commercial program, FLUENT. The performance of the submersible mixers is related to the velocity diffusion profiles downstream of the impeller and also the required input motor power to mix the fluid. In this study, the various design parameters such as the number of blade, the hub and tip diameters, the impeller blade profiles and revolution speed of the blades were taken for the fixed values. The blade sweep direction, the chord length distribution along with the radius of the blade and the inlet blade angle were changed to make different testing models. The flow calculation results show the effect of the changed design parameters on the performance of the submersible mixers and also give some helpful information for designing more efficient submersible mixers.

  • PDF

Numerical analysis of sheet cavitation on marine propellers, considering the effect of cross flow

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.546-558
    • /
    • 2013
  • The research performed in this paper was carried out to investigate the numerical analysis of the sheet cavitation on marine propeller. The method is boundary element method (BEM). Using the Green's theorem, the velocity potential is expressed as an integral equation on the surface of the propeller by hyperboloid-shaped elements. Employing the boundary conditions, the potential is determined via solving the resulting system of equations. For the case study, a DTMB4119 propeller is analyzed with and without cavitating conditions. The pressure distribution and hydrodynamic performance curves of the propellers as well as cavity thickness obtained by numerical method are calculated and compared by the experimental results. Specifically in this article cavitation changes are investigate in both the radial and chord direction. Thus, cross flow variation has been studied in the formation and growth of sheet cavitation. According to the data obtained it can be seen that there is a better agreement and less error between the numerical results gained from the present method and Fluent results than Hong Sun method. This confirms the accurate estimation of the detachment point and the cavity change in radial direction.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (I) -A Time-Averaged Characteristic- (주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(I) -시간평균된 유동 특성-)

  • Park, Tae-Chun;Jeon, U-Pyeong;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.776-785
    • /
    • 2001
  • Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2$\times$10(sup)5 and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase-and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer.

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

A Study of rotor-stator interaction in an axial fan (축류송풍기의 동익과 정익 사이 간격변화에 따른 유동간섭에 관한 연구)

  • Rim, In-Won;Seon, Ho-Su;Joo, Won-Gu;Cho, Kang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.819-824
    • /
    • 2000
  • The flow inside an axial turbomachinery must be unsteady. Rotor-stator interaction by two blade rows influences performance, the generation of noise and vibration. So, it will be necessary to study the rotor-stator interaction for the design of an axial fan in which the axial gap between two blade rows is small. In this study, rotor-stator interaction is investigated by experimental methods. The research fan has one stage which consists of 24 rotor blades and 22 stator blades. Three-dimensional velocities measured using $45^{\circ}$ slanted hot wire probe and total pressure is measured using Kiel total pressure probe between rotor and stator with the axial 25%, 55%, 145% of chord length,. This study describes the influence of rotor-stator gap on the flow pattern, performance and loss. The efficiency curve show that the change of the rotor-stator gap make difference in the efficiency. And, the 3-dimensional velocity distribution show that the potential interaction between the rotor and the stator have a great effect on the flow field downstream of rotor, where there are wake flow. various vortices in hub region and leakage vortex in casing region etc.

  • PDF

Study of the Effects of Wakes on Cascade Flow (후류가 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF

Standard Procedure for the Aerodynamic Design of Small Wind Turbine Blades (소형 풍력 블레이드 공력 설계를 위한 표준 절차 구축)

  • Chang, Se-Myong;Jeong, Su-Yun;Seo, Hyun-Soo;Kyong, Nam-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.473-473
    • /
    • 2009
  • There have been many academic researches on the aerodynamic design of wind turbine based on blade element method (BEM) and momentum theory (MT, or actuating disk theory). However, in the real world, the turbine blade design requires many additional constraints more than theoretical analysis. The standard procedure is studied in the present paper to design new blades for the wind turbine system ranged from the small size from 1 to 10 kW. From the experience of full design of a 10 kW blade, the authors tried to set up a standard procedure for the aerodynamic design based on IEC 61400-2. Wind-turbine scale, rotating speed, and geometrical chord/twist distribution at the segmented span positions are calculated with a suitable BEM/MT code, and the geometrical shape of tip and root should be modified after considering various parameters: wing-tip vortex, aerodynamic noise, turbine efficiency, structural safety, convenience of fabrication, and even economic factor likes price, etc. The evaluated data is passed to the next procedure of structural design, but some of them should still be corresponded with each other: the fluid-structure interaction is one of those problems not yet solved, for example. Consequently, the design procedure of small wind-turbine blades is set up for the mass production of commercial products in this research.

  • PDF

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Experimental Study on the Vortical Flow Behind 2-D Blade with the Variation of Trailing Edge Shape (2차원 날개 끝단 형상에 따른 후류 보오텍스 유동 변화에 대한 실험 연구)

  • Paik, Bu-Geun;Kim, Ki-Sup;Moon, Il-Sung;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.233-237
    • /
    • 2011
  • In the present experiments, vortical structures behind the hydrofoil trailing edge are visualized and analyzed as an elementary study for propeller singing phenomena. Two sorts of hydrofoil are selected for the measurement of shedding vortices. One was KH45 hydrofoil section and the other is KH45 with the truncated trailing edge that is positioned at X/C = 0.9523(C=chord length). Assuming the Strouhal number of 0.23, the shedding frequencies of vortices are extracted by analyzing the boundary layer thickness and the flow speed. The frequency distribution of shedding vortices is obtained with the variation of angle-of-attack while the flow speed is fixed to 8m/s. The truncation of the trailing edge makes the frequency of shedding vortices about 120Hz lower than that of original trailing edge and makes the vorticity value higher than the original trailing edge.