• Title/Summary/Keyword: chopped fiber

Search Result 92, Processing Time 0.03 seconds

An Optimum Harvest Time for Making Grinded Silage of Barley and Wheat for Whole Crop (총체맥류 분쇄 사일리지 조제를 위한 적정 수확시기)

  • Song, Tae-Hwa;Kang, Chon-Sik;Cheong, Young-Keun;Park, Jong-Ho;Park, Tae-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.264-270
    • /
    • 2017
  • This study was carried out to investigate the optimal harvesting time, feed value and fermentation quality of barley and wheat for the making of chopped whole crop silage substitute for formula feed. As a result, the moisture content of barley and wheat decreased with a late harvest, and barley progressed faster than wheat. The plant height was similar with harvesting time, and the number of spikes decreased with prolonged period after heading. The dry matter yield and TDN yield of barley harvested at 35 and 40 days after heading were significantly higher than those at 30 days after heading and wheat was significantly higher at 40 and 45 days than at 35 day after heading(p<0.05). Crude protein content of barley and wheat were increased with later harvesting time, and crude fiber, crude fat and crude ash were slightly decreased, but not statistically significant. NDF and ADF content of barley decreased with later harvesting time, and those showed similar level in wheat. TDN content of barely was slightly increased but there was no difference in wheat. Comparing the effects of fermentation on feed value of chopped whole crop silage, the approximate compositions were slightly increased after fermentation, but the difference was not significant. Fermentations resulted in increasing the pH value of barley silage with late harvesting time, but decreasing the lactic acid content(p<0.05). A pH value of wheat silage showed similar level in different harvest time, and lactic acid content was decreased. Considering the quantity and quality of fermentation, barley and wheat can be used for making chopped silage of whole crop silage when they were harvested at 35 days and 40~45 days after heading, respectively.

Investigating the Partial Substitution of Chicken Feather for Wood Fiber in the Production of Wood-based Fiberboard (목질 섬유판 제조에 있어 도계부산물인 닭털의 목섬유 부분적 대체화 탐색)

  • Yang, In;Park, Dae-Hak;Choi, Won-Sil;Oh, Sei Chang;Ahn, Dong-uk;Han, Gyu-Seong;Oh, Seung Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.577-584
    • /
    • 2018
  • This study was conducted to investigate the potential of chicken feather (CF), which is a by-product in poultry industry, as a partial substitute of wood fiber in the production of wood-based fiberboard. Keratin-type protein constituted the majority of CF, and its appearance did not differ from that of wood fiber. When the formaldehyde (HCHO) adsorptivities of CF compared by its pretreatment type, feather meal (FM), which was pretreated CF with high temperature and pressure and then grounded, showed the highest HCHO adsorptivity. In addition, there was no difference between the adsorbed HCHO amounts, which was measured by dinitrophenylhydrazine method, of scissors-chopped CF and CF beated with an electrical blender. Mechanical properties and HCHO emission of medium-density fiberboards (MDF), which were fabricated with wood fiber and 5 wt% CF, beated CF or FM based on the oven-dried weight of wood fiber, were not influenced by the pretreatment type of CF. However, when the values compared with those of MDF made with just wood fiber, thickness swelling and HCHO emission of the MDF were improved greatly with the addition of CF, beated CF or FM. Based on the results, it might be possible to produce MDF with improved dimensional stability and low HCHO emission if CF, beated CF or FM is added partially as a substitute of wood fiber in the manufacturing process of MDF produced with the conventional urea-formaldehyde resin of $E_1$ grade. However, the use of CF or FM in the production of MDF has a low economic feasibility at the current situation due to the securing difficulty and high cost of CF. In order to enhance the economic feasibility, it requires to use CF produced at small to medium-sized chicken meat plants. More importantly, it is considered that the technology developed from this research has a great potential to make provision for the prohibition of animal-based feed and to dispose environmentally avian influenza-infected poultry.

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF

Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens

  • Aliha, M.R.M.;Heidari-Rarani, M.;Shokrieh, M.M.;Ayatollahi, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.823-833
    • /
    • 2012
  • An experimental method was suggested for obtaining fracture toughness ($K_{Ic}$) and the tensile strength (${\sigma}_t$) of chopped strand glass fiber reinforced polymer concretes (PC). Semi-circular bend (SCB) specimens subjected to three-point bending were used for conducting the experiments on the PC material. While the edge cracked SCB specimen could be used to evaluate fracture toughness, the tensile strength was obtained from the un-cracked SCB specimen. The experiments showed the practical applicability of both cracked and un-cracked SCB specimens for using as suitable techniques for measuring $K_{Ic}$ and ${\sigma}_t$ in polymer concretes. In comparison with the conventional rectangular bend beam specimen, the suggested SCB samples need significantly less material due to its smaller size. Furthermore, the average values of ${\sigma}_t$ and $K_{Ic}$ of tested PC were approximately 3.5 to 4.5 times the corresponding values obtained for conventional concrete showing the improved strength properties of PC relative to the conventional concretes.

Effect of Microbial and Chemical Combo Additives on Nutritive Value and Fermentation Characteristic of Whole Crop Barley Silage

  • Kim, Dong Hyeon;Amanullah, Sardar M.;Lee, Hyuk Jun;Joo, Young Ho;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1274-1280
    • /
    • 2015
  • This study was conducted to assess the effects of microbial and chemical combo additives on nutritive values, fermentation indices and aerobic stability of whole crop barley silage. Barley forage (Youngyang) was harvested at about 30% dry matter (DM) by treatments, chopped to 5 cm length and treated with distilled water only (CON), Lactobacillus plantarum (INO), propionic acid (PRO) or an equal mixture of INO and PRO (MIX). Barley forages were ensiled in 4 replications for 0, 2, 7, and 100 days. On 100 days of ensiling, MIX silage had higher (p<0.05) in vitro DM digestibility than CON silage, but lower (p<0.05) acid detergent fiber concentration. The pH in all treated silages was lower (p<0.05) than CON silage. The MIX silage had higher (p<0.05) lactate concentration and lactate to acetate ratio than in CON, but lower (p<0.05) yeast count. Aerobic stability in CON, PRO, and MIX silages were higher (p<0.05) than in INO silage. It is concluded that microbial and chemical combo additives using L. plantarum and propionic acid could efficiently improve nutritive values of barley silage in terms of increased in vitro DM digestibility compared to other treatments. In addition, all treatments except CON reduced yeast count which is the initiate microorganism of aerobic spoilage.

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells (고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo;Kim, Minkook;Lee, Dai Gil
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.243-248
    • /
    • 2016
  • Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.

Feeding Value of Sugarcane Stalk for Cattle

  • Kawashima, T.;Sumamal, W.;Pholsen, P.;Chaithiang, R.;Boonpakdee, W.;Kurihara, M.;Shibata, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • A metabolism trial with four castrated male Brahman cattle, average body weight 320 kg, was conducted in order to determine the nutritive value of chopped sugarcane stalk (CSS) for the establishment of feeding strategy in the dry season in Northeast Thailand. Animals were subjected to the following four dietary treatments: Treatment 1; 100% of CSS, Treatment 2; 70% of CSS and 30% of commercial complete feed (TMR), Treatment 3; 40% of CSS and 60% of TMR, and Treatment 4; 100% of TMR. The average CP, ether extracts, nitrogen free extracts, crude fiber and ash contents of CSS were 2.0, 0.9, 79.0, 16.1 and 2.2%, respectively. Although the amount of feed given was approximately at maintenance level, animals in treatments 1 and 2 refused a part of feed. The metabolism trial revealed that total digestible nutrient and metabolizable energy contents of CSS were 61.5% and 9.04 MJ/kgDM, respectively, when it was properly supplemented with protein sources. Nutritive value of CSS was lowered when animals were given CSS solely. This was due to the large loss of energy into urine and methane. Voluntary intake of CSS in cattle was not enough to satisfy energy requirement for maintenance. The CSS can be used as a roughage for feeding cattle in the dry season with proper supplementation of protein and energy.

Evaluation of Feed Values for Whole Crop Rice Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 사료용 벼의 사료가치 평가)

  • Kim, Ji Hye;Lee, Ki-Won;Oh, Mirae;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.292-297
    • /
    • 2019
  • In this study, whole crop rice samples were used to develop near-infrared reflectance (NIR) equations to estimate six forage quality parameters: Moisture, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), Ash and relative feed value (RFV). A population of 564 whole crop rice representing a wide range in chemical parameters was used in this study. Undried finely chopped whole crop rice samples were scanned at 1 nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R). NIRS calibrations were developed by means of partial least-squares (PLS) regression. The correlation coefficients of cross-validation (R2cv) and standard error of cross-validation (SECV) for whole crop rice calibration were 0.98 (SECV 1.81%) for moisture, 0.89 (SECV 0.50%) for CP, 0.86 (SECV 1.79%) for NDF, 0.89 (SECV 0.86%) for ash, and 0.84 (SECV 5.21%) for RFV on a dry matter (%), respectively. The NIRS calibration equations developed in this study will be useful in predicting whole crop rice quality for these six quality parameters.

Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives

  • Gao, Jun Lei;Wang, Peng;Zhou, Chang Hai;Li, Ping;Tang, Hong Yu;Zhang, Jia Bao;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1854-1863
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase. Methods: Corn ears including the cobs and shucks were harvested at the ripe stage. The corn stover was exposed in the field under natural weather conditions. Silages were prepared after 0, 2, 4, 7, 15, 30, and 60 d of exposure. Corn stover was chopped into approximately 1 to 2 cm lengths and then packed into 5 liter plastic silos. The ensiling density was $550.1{\pm}20.0g/L$ of fresh matter, and the silos were kept at room temperature ($10^{\circ}C$ to $25^{\circ}C$). Silage treatments were designed as follows: without additives (control), with LAB, with cellulase, and with LAB+ cellulase. After 45 d of fermentation, the silos were opened for chemical composition, fermentation quality and in vitro digestion analyses. Results: After harvest, corn stover contained 78.19% moisture, 9.01% crude protein (CP) and 64.54% neutral detergent fiber (NDF) on a dry matter (DM) basis. During field exposure, the DM, NDF, and acid detergent fiber (ADF) contents of corn stover increased, whereas the CP and water-soluble carbohydrate contents and in vitro digestibility of the DM and CP decreased (p<0.05). Compared to the control silage, cellulase-treated silage had lower (p<0.05) NDF and ADF contents. The pH values were lower in silage treated with LAB, cellulase, or LAB+cellulase, and lactic acid contents were higher (p<0.05) than those of the control. Silage treated with cellulase or LAB+cellulase improved (p<0.05) the in vitro DM digestibility (IVDMD) compared to that of the control or LAB-treated silage. Conclusion: Corn stover silage should be prepared using fresh materials since stover nutrients are lost during field exposure, and LAB and cellulase can improve silage fermentation and IVDMD.

Effect of Plants Containing Secondary Compounds with Palm Oil on Feed Intake, Digestibility, Microbial Protein Synthesis and Microbial Population in Dairy Cows

  • Anantasook, N.;Wanapat, M.;Cherdthong, A.;Gunun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.820-826
    • /
    • 2013
  • The objective of this study was to determine the effect of rain tree pod meal with palm oil supplementation on feed intake, digestibility, microbial protein synthesis and microbial populations in dairy cows. Four, multiparous early-lactation Holstein-Friesian crossbred (75%) lactating dairy cows with an initial body weight (BW) of $405{\pm}40$ kg and $36{\pm}8$ DIM were randomly assigned to receive dietary treatments according to a $4{\times}4$ Latin square design. The four dietary treatments were un-supplementation (control), supplementation with rain tree pod meal (RPM) at 60 g/kg, supplementation with palm oil (PO) at 20 g/kg, and supplementation with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter intake. The cows were offered concentrates, at a ratio of concentrate to milk production of 1:2, and chopped 30 g/kg of urea treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM, respectively. It was found that supplementation with RPM and/or PO to dairy cows diets did not show negative effects on feed intake and ruminal pH and BUN at any times of sampling (p>0.05). However, RPM supplementation resulted in lower crude protein digestibility, $NH_3$-N concentration and number of proteolytic bacteria. It resulted in greater allantoin absorption and microbial crude protein (p<0.05). In addition, dairy cows showed a higher efficiency of microbial N supply (EMNS) in both RPM and RPO treatments. Moreover, NDF digestibility and cellulolytic bacteria numbers were highest in RPO supplementation (p<0.05) while, supplementation with RPM and/or PO decreased the protozoa population in dairy cows. Based on this study, supplementation with RPM and/or PO in diets could improve fiber digestibility, microbial protein synthesis in terms of quantity and efficiency and microbial populations in dairy cows.