• Title/Summary/Keyword: cholangiocyte

Search Result 3, Processing Time 0.018 seconds

Effects of 5-Aza-2'-Deoxycytidine, Bromodeoxyuridine, Interferons and Hydrogen Peroxide on Cellular Senescence in Cholangiocarcinoma Cells

  • Moolmuang, Benchamart;Singhirunnusorn, Pattama;Ruchirawat, Mathuros
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.957-963
    • /
    • 2016
  • Cellular senescence, a barrier to tumorigenesis, controls aberrant proliferation of cells. We here aimed to investigate cellular senescence in immortalized cholangiocyte and cholangiocarcinoma cell lines using five different inducing agents: 5-aza-2'deoxycytidine, bromodeoxyuridine, interferons ($IFN{\beta}$ and $IFN{\gamma}$), and hydrogen peroxide. We analyzed senescence characteristics, colony formation ability, expression of genes involved in cell cycling and interferon signaling pathways, and protein levels. Treatment with all five agents decreased cell proliferation and induced cellular senescence in immortalized cholangiocyte and cholangiocarcinoma cell lines with different degrees of growth-inhibitory effects depending on cell type and origin. Bromodeoxyuridine gave the strongest stimulus to inhibit growth and induce senescence in most cell lines tested. Expression of p21 and interferon related genes was upregulated in most conditions. The fact that bromodeoxyuridine had the strongest effects on growth inhibition and senescence induction implies that senescence in cholangiocarcinoma cells is likely controlled by DNA damage response pathways relating to the p53/p21 signaling. In addition, interferon signaling pathways may partly regulate this mechanism in cholangiocarcinoma cells.

Histone Deacetylases and their Inhibitors as Potential Therapeutic Drugs for cholangiocarcinoma - Cell Line findings

  • Sriraksa, Ruethairat;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2503-2508
    • /
    • 2013
  • Histone deacetylation mediated by histone deacetylases (HDACs) has been reported as one of the epigenetic mechanisms associated with tumorigenesis. The poor responsiveness of anticancer drugs found with cholangiocarcinoma (CCA) leads to short survival rate. We aimed to investigate mRNA expression of HDACs class I and II, and the effect of HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA), in CCA in vitro. Expression of HDACs was studied in CCA cell lines (M213, M214 and KKU-100) and an immortal cholangiocyte (MMNK1) by semi-quantitative reverse transcription-PCR. SAHA and VPA, as well as a classical chemotherapeutic drug 5 -fluorouacil (5-FU) were used in this study. Cell proliferation was determined by sulforhodamine assay. $IC_{50}$ and $IC_{20}$ were then analyzed for each agent and cell line. Moreover, synergistic potentional of VPA or SAHA in combination with 5-FU at sub toxic does ($IC_{20}$) of each agent was also evaluated. Statistic difference of HDACs expression or cell proliferation in each experimental condition was analyzed by Student's t-test. The result demonstrated that HDACs were expressed in all studied cell types. Both SAHA and VPA inhibited cell proliferation in a dose-dependent manner. Interestingly, KKU-100 which was less senstitive to classical chemotheraoeutic 5-FU was highly was sensitive to HDAC inhibitors. Simultaneous combination of subtoxic doses of HDAC inhibitors and 5-FU signiicantly inhibited cell proliferation in CCA cell lines compared to single sgent treatment($P{\leq}0.01$), while sequentially combined treatments were less effective. The present study showed inhibitory effects of HDACIs on cell proliferation in CCA cell lines, with synergistic antitumor potential demonstrated by simultaneous combination of VPA or SAHA with 5-FU, suggesting a novel alternative therapeutic strategy in effective treatment of CCA.

Expression of Anion Exchanger and CFTR in the Hepatocyte and Cholangiocytes in Bile Duct-Ligated Rat (담관 결찰 쥐의 간세포와 담관세포의 anion exchanger와 CFTR 발현)

  • Lee, Jae-Dong;Wang, Joon-Ho;Ki, Seung-Seog;Choe, Won-Hyeok;Park, Jae-Seung;Cho, Won-Kyoo;Park, Jung-Jun;Kim, Hong-Su
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1772-1777
    • /
    • 2011
  • Cystic fibrosis transmembrane conductance regulator (CFTR) gene and sodium-independent $Cl^-/HCO_3^-$ anion exchanger (AE) genes are expressed in a wide variety of mammalian tissues including cholangiocytes. They play an important role in the regulation of intracellular pH (pHi) as well as in transepithelial acid/base transport necessary for biliary bicarbonate secretion. The aim of this study was to examine the expression level of CFTR gene and AE genes (AE1, AE2 and AE3) in the cholangiocytes and the hepatocytes, and also measure AE2 gene expression level after bile duct ligation (BDL). As we previously described, isolated hepatocytes and cholangiocytes from the liver of normal and BDL rats were prepared and gene expression levels were measured by using RT-PCR. We found that AE1, AE2, and AE3 genes were expressed in both hepatocytes and cholangiocytes, but CFTR was only in cholangiocytes. AE2 gene expression level was higher in the BDL hepatocytes than normal hepatocytes, which was significantly different between two groups. AE2 gene expression level was lower in the BDL cholangiocytes than normal cholangiocytes. However, AE2 gene expression level in both hepatocytes and cholangiocytes were not changed with a longer duration of BDL. These results suggest that CFTR and AE2 may play an important role in the pathogenetic mechanism of biliary cholestatic liver disease.