• Title/Summary/Keyword: cholangiocarcinoma cell line

Search Result 13, Processing Time 0.021 seconds

Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties

  • Hong Kyu Lee;Yun-Jung Na;Su-Min Seong;Dohee Ahn;Kyung-Chul Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.368-378
    • /
    • 2024
  • Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.

Cytotoxicity, Toxicity, and Anticancer Activity of Zingiber Officinale Roscoe Against Cholangiocarcinoma

  • Plengsuriyakarn, Tullayakorn;Viyanant, Vithoon;Eursitthichai, Veerachai;Tesana, Smarn;Chaijaroenkul, Wanna;Itharat, Arunporn;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4597-4606
    • /
    • 2012
  • Cholangiocarcinoma (CCA) is an uncommon adenocarcinoma which arises from the epithelial cells of the bile ducts. The aim of the study was to investigate the cytotoxicity, toxicity, and anticancer activity of a crude ethanolic extract of ginger (Zingiber officinale Roscoe) against CCA. Cytotoxic activity against a CCA cell line (CL-6) was assessed by calcein-AM and Hoechst 33342 assays and anti-oxidant activity was evaluated using the DPPH assay. Investigation of apoptotic activity was performed by DNA fragmentation assay and induction of genes that may be involved in the resistance of CCA to anticancer drugs (MDR1, MRP1, MRP2, and MRP3) was examined by real-time PCR. To investigate anti-CCA activity in vivo, a total of 80 OV and nitrosamine (OV/DMN)-induced CCA hamsters were fed with the ginger extract at doses of 1000, 3000, and 5000 mg/kg body weight daily or every alternate day for 30 days. Control groups consisting of 10 hamsters for each group were fed with 5-fluorouracil (positive control) or distilled water (untreated control). Median $IC_{50}$ (concentration that inhibits cell growth by 50%) values for cytotoxicity and anti-oxidant activities of the crude ethanolic extract of ginger were 10.95, 53.15, and $27.86{\mu}g/ml$, respectively. More than ten DNA fragments were visualized and up to 7-9 fold up-regulation of MDR1 and MRP3 genes was observed following exposure to the ethanolic extract of ginger. Acute and subacute toxicity tests indicated absence of any significant toxicity at the maximum dose of 5,000 mg/kg body weight given by intragastric gavage. The survival time and survival rate of the CCA-bearing hamsters were significantly prolonged compared to the control group (median of 54 vs 17 weeks). Results from these in vitro and in vivo studies thus indicate promising anticancer activity of the crude ethanolic extract of ginger against CCA with the absence of any significant toxicity. Moreover, MDR1 and MRP3 may be involved in conferring resistance of CCA to the ginger extract.

Effects of Excretory/Secretory Products from Clonorchis sinensis and the Carcinogen Dimethylnitrosamine on the Proliferation and Cell Cycle Modulation of Human Epithelial HEK293T Cells

  • Kim, Eun-Min;Kim, June-Sung;Choi, Min-Ho;Hong, Sung-Tae;Bae, Young-Mee
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.3
    • /
    • pp.127-132
    • /
    • 2008
  • Clonorchis sinensis is one of the most prevalent parasitic helminths in Korea. Although cholangiocarcinoma can be induced by C. sinensis infection, the underlying mechanism is not clearly understood. To assess the role of C. sinensis infection in carcinogenesis, an in vitro system was established using the human epithelial cell line HEK293T. In cells exposed to the excretory/secretory products (ESP) of C. sinensis and the carcinogen dimethylnitrosamine (DMN), cellular proliferation and the proportion of cells in the G2/M phase increased. Moreover, the expression of the cell cycle proteins E2F1, p-pRb, and cyclin B was dramatically increased when ESP and DMN were added together. Similarly, the transcription factor E2F1 showed its highest level of activity when ESP and DMN were added simultaneously. These findings indicate that DMN and ESP synergistically affect the regulation of cell cycle-related proteins. Our results suggest that exposure to C. sinensis and a small amount of a carcinogen such as DMN can promote carcinogenesis in the bile duct epithelium via uncontrolled cellular proliferation and the upregulation of cell cycle-related proteins.