• Title/Summary/Keyword: chlorophyll removal

Search Result 92, Processing Time 0.02 seconds

In Situ Surfactant Flushing of Contaminated Site (계면 활성제를 이용한 In Situ 토양 세척)

  • 염익태;안규홍
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.9-24
    • /
    • 1997
  • Surfactant-aided in situ soil flushing has been proposed as an alternative for the expensive and time consuming 'pump and treat' technology in remediation of contaminated soil and groundwater Injected surfactants can effectively solubilize contaminants sorbed to the soil matrix or nonaqueous phase liquids(NAPLs) in residual saturation. The contaminants solubilized in groundwater are recovered and treated further. The theoretical background of the technology and the results of the field operations, mostly in the US. were summarized. In addition, the factors crucial to the successful application of the technology were discussed. Cost analyses and technical limitations in current applications were also discussed. In conclusion, it is likely that in situ surfactant flushing become a viable option for soil remediation in limited cases. Currently, further advances with respect to operation cost and to treatment efficiency are required for more extensive application of the technology. However, the current trends in soil remediation, specially the growing emphasis on risk based corrective action and natural attenuation, will increase the competitiveness of the technology. For example, removal of easily washable contaminants by short term soil flushing followed by long term monitoring and natural attenuation can greatly reduce the operation cost and time.

  • PDF

Using Trophic State Index (TSI) Values to Draw Inferences Regarding Phytoplankton Limiting Factors and Seston Composition from Routine Water Quality Monitoring Data (영양상태지수 (trophic state index)를 이용한 수체 내 식물플랑크톤 제한요인 및 seston조성의 유추)

  • Havens, Karl E
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.187-196
    • /
    • 2000
  • This paper describes a simple method that uses differences among Carlson's (1977) trophic state index (TSI) values based on total phosphorus (TP), chlorophyll a (CHL) and Secchi depth (SD) to draw inferences regarding the factors that are limiting to phytoplankton growth and the composition of lake seston. Examples are provided regarding seasonal and spatial patterns in a large subtropical lake (Lake Okeechobee, Florida, USA) and inter- and intra-lake variations from a multilake data set developed from published studies. Once an investigator has collected routine water quality data and established TSI values based on TP, CHL, and SD, a number of inferences can be made. Additional information can be provided where it also is possible to calculate a TSI based on total nitrogen (TN). Where TSI (CHL)<>TSI (SD), light attenuating particles are large (large filaments or colonies of algae), and the phytoplankton may be limited by zooplankton grazing. Other limiting conditions are inferred by different relationships between the TSI values. Results of this study indicate that the analysis is quite robust, and that it generally gives good agreement with conclusions based on more direct methods (e.g., nutrientaddition bioassays, zooplankton size data, zooplankton removal experiments). The TSI approach, when validated periodically with these more costly and time-intensive methods, provides an effective, low cost method for tracking long-term changes in pelagic structure and function with potential value in monitoring lake ecology and responses to management.

  • PDF