• Title/Summary/Keyword: chlorophyll biosynthesis

Search Result 55, Processing Time 0.027 seconds

Cobalt complex structure of the sirohydrochlorin chelatase SirB from Bacillus subtilis subsp. spizizenii (Bacillus subtilis subsp. spizizenii의 sirohydrochlorin chelatase SirB의 코발트 복합체 구조)

  • Nam, Mi Sun;Song, Wan Seok;Park, Sun Cheol;Yoon, Sung-il
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Chelatase catalyzes the insertion of divalent metal into tetrapyrrole and plays a key role in the biosynthesis of metallated tetrapyrroles, such as cobalamin, siroheme, heme, and chlorophyll. SirB is a sirohydrochlorin (SHC) chelatase that generates cobalt-SHC or iron-SHC by inserting cobalt or iron into the center of sirohydrochlorin tetrapyrrole. To provide structural insights into the metal-binding and SHC-recognition mechanisms of SirB, we determined the crystal structure of SirB from Bacillus subtilis subsp. spizizenii (bssSirB) in complex with cobalt ions. bssSirB forms a monomeric ${\alpha}/{\beta}$ structure that consists of two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD). The NTD and CTD of bssSirB adopt similar structures with a four-stranded ${\beta}-sheet$ that is decorated by ${\alpha}-helices$. bssSirB presents a highly conserved cavity that is generated between the NTD and CTD and interacts with a cobalt ion on top of the cavity using two histidine residues of the NTD. Moreover, our comparative structural analysis suggests that bssSirB would accommodate an SHC molecule into the interdomain cavity. Based on these structural findings, we propose that the cavity of bssSirB functions as the active site where cobalt insertion into SHC occurs.

Polyamine 함량이 증가된 형질전환 담배 식물체에서의 스트레스 저항성에 관한 연구

  • Wi, Su-Jin;Park, Gi-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.189-192
    • /
    • 2001
  • We have investigated the effects of abiotic and biotic stresses on leaf senescence using transgenic tobacco plants, in which cellular contents of polyamines were increased by introducing the genes of polyamine and ethylene biosynthesis in sense or antisense orientation. These transgenic plants showed accumulations of polyamines at higher levels than were found in wild-type. Stress-induced senescence was attenuated in transgenic plants cpmpared with wild-type plants, in terms of total chlorphyll loss and phenotypic changes after oxidative stress of hydrogen peroxide($H_2O_2$), high salinity, acid stress (pH3.0), ABA and fungal pathogen(phytophothora parasitica pv.Nicotianae). Transcripts for antioxidant enzyme, glutathionine-S-transferase and catalase, were also more abundant in transgenic plants than wild-type plants. These result suggested that higher expression of those genes caused a broad-spectrum resistance to abiotic stress/biotic stress. These phenomena indicate that polyamines may play an important role in contributing to the antioxidant defense function in plants. Our findings suggest that facilitate the improvement of stress tolerance of crop plants.

  • PDF

Influence of Hexaconazole on Biochemical Constituents of Groundnut (땅콩의 생화학성분에 미치는 Hexaconazole의 영향)

  • Johnson, I.;Marimuthu, T.;Samiyappan, R.;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2008
  • In this study, hexaconazole 5% SC, an ergosterol biosynthesis inhibitor, was tested on groundnut with its recommended ($500\;mL\;ha^{-1}$) and higher ($2,000\;mL\;ha^{-1}$) concentrations under greenhouse conditions in India. Its influence on biochemical constituents of groundnut plants was assessed apart from its disease management potential against late leaf spot caused by Phaeoisariopsis personata (Berk and Curt). Likewise, leaf samples were collected from hexaconazole 5% SC-sprayed plants at different time intervals. Thereafter, their analyses showed considerable differences in the plant constituents, such as chlorophyll, soluble protein, and total phenol contents and the activity of nitrate reductase enzyme. The induction activity of defense-related enzyme, peroxidase, was also analyzed. However, no difference was observed in the isozymic pattern. Moreover, the ground kernels collected from treated plants also showed no difference in the estimated carbohydrate and other constituents.

Growth regulation and Nitrogen Uptake Inhibition of Zoysia matrella Applying Prohexadione Calcium (Prohexadione-calcium 처리에 따른 금잔디의 생육 조절 및 질소 흡수 억제)

  • Kim, Woo-Sung;Kim, Young-Sun;Lim, Chi-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.359-365
    • /
    • 2021
  • BACKGROUND: Prohexadione-calcium (PC) is a plant growth regulator of cyclohexanedione family acting on inhibiting gibberellin biosynthesis and has been used to regulate shoot elongation of turfgrass in the golf course during the summer season. This study was conducted to investigate the effects of PC on the inhibition of shoot elongation, growth, and nitrogen uptake in Zoysia matrella. METHODS AND RESULTS: Treatments were as follows; non-treatment, control (TE 0.01 a.i. g/m2/100 mL), 0.0025PC (PC 0.0025 a.i. g/m2/100 mL), 0.005PC (PC 0.005 a.i. g/m2/100 mL), 0.01PC (PC 0.01 a.i. g/m2/100 mL) and 0.02PC (PC 0.02 a.i. g/m2/100 mL). Visual quality and chlorophyll content were not significantly different. As compared to non-treatment, shoot length and clipping yield in 0.005PC, 0.01PC and 0.02PC treatments were decreased by 29-36% and 65-82%, respectively, and those of 0.0025PC were not significantly different. N uptake of Z. matrella after applying PC was decreased by 28.9-77.8% than that of non-treatment. Inhibition effects of PC treatment in Z. matrella were not significantly different from those of control. CONCLUSION(S): These results indicated that the application of prohexadione calcium inhibited shoot elongation, clipping yield and N uptake amount in Z. matrella, and trinexapac-ethyl could be replaced with prohexadione-calcium in turfgrass management.

The Effects of Sodium Chloride and the Cultivation Method on Antioxidant Compounds and Activities in Wheat (Triticum aestivum) Sprouts (염화나트륨 처리 및 재배방법이 새싹밀의 항산화 성분 및 활성에 미치는 영향)

  • Yang, Ji Yeong;Lee, HanGyeol;Seo, Woo Duck;Lee, Mi Ja;Song, Seung-Yeob;Choi, June-Yeol;Kim, Hyun Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.213-222
    • /
    • 2022
  • Sprouts have various health benefits. Specifically, wheat sprouts are rich in bioactive compounds, such as vitamins and polyphenols. Elicitation induces and enhances secondary metabolite biosynthesis in plants. Therefore, in this study, we investigated the effects of sodium chloride (NaCl) treatments on the growth profile, free amino acid content, and antioxidant activity of germinated wheat (Triticum aestivum). Wheat seeds were germinated at 20℃ for 10 days and treated with 0, 2, 4, 7.5, and 10 mM of NaCl 10 days before harvesting. Treating the soil bed with NaCl increased the nutritional component amounts, such as free amino acids and γ-aminobutyric acid. The chlorophyll a and b concentrations were the highest in the hydroponic system treated with 7.5 mM NaCl. In addition, the polyphenol and flavonoid contents of sprouts treated with 2 and 7.5 mM NaCl were 1.94 and 1.34 times higher than that of the control sprouts (0 mM NaCl, water only), respectively. These results suggest that 2 to 4 mM NaCl treatments improve the nutritional and food quality of wheat sprouts more than water only.

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

Different Physiological Activity of Selected Rice Cultivars to Diphenylether Herbicide, Oxyfluorfen - III. Differential Protoporphyrinogen Oxidase(Protox) Activity and Protoporphyrinogen IX(PPIX) Accumulation (Oxyfluorfen에 대한 내성(耐性) 및 감수성(感受性) 벼품종(品種)의 생리활성(生理活性) 기구 (機構) - III. Protoporphyrinogen oxidase(Protox)활성(活性)과 Protoporphyrinogen IX(PPIX) 축적(蓄積))

  • Kuk, Y.I.;Guh, J.O.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.150-159
    • /
    • 1996
  • This study was conducted to investigate the inhibition of protox activity and the PPIX accumulation of the oxyfluorfen-tolerant and-susceptible rice cultivars with barnyardgrass, a typical susceptible weed in accordance by oxyfluorfen treatment. The susceptible rice cultivars and barnyardgrass showed more inhibition of protox activity due to the treatment of oxyfluorfen than the tolerant rice cultivars. Especially in the concentration at $10^{-6}$M treatment, protox activity of the susceptible rice cultivars and barnyardgrass were the completely inhibited but the tolerant rice cultivars kept 32~59% of activity compared to the control. As the treatment concentration increased, the content of PPIX accumulation increased and it increased untill four hours of light exposure but it tended to decrease these after. The content of PPIX accumulation by the treatment of oxyfluorfen was more pronounced in the light condition than in the dark. Under the light and dark conditions, the susceptible rice cultivars and barnyardgrass showed more PPIX accumulation than the tolerant rice cultivate. Especialiy the susceptible barnyardgrass had more than the rice. With the treatment of GC and DA, tetrapyrrole biosynthesis inhibitor, the herbicidal activity by oxyfluorfen was inhibited, and the susceptible rice cultivars and barnyardgrass tended to have less effective than the tolerant rice cultivars and the content of chlorophyll or PPS accumulation tended to be similar.

  • PDF

Transformation of the Diatom Phaeodactylum tricornutum with its Endogenous (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase Gene (Phaeodactylum tricornutum의 (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase 유전자의 형질전환)

  • Shin, Bok-Kyu;Jung, Yu-Jin;Kim, Sang-Min;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.273-279
    • /
    • 2015
  • Phaeodactylum tricornutum is a model diatom that its genomic information and biological tools are well established. In this study, a gene encoding (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (PtHDR), a terminal enzyme of the methylerythritol phosphate pathway regulating chlorophyll and carotenoid biosynthesis, was isolated from P. tricornutum. The isolated gene was cloned into pPha-T1 vector containing fcpA promoter to prepare pPha-T1-HDR plasmid. As a positive control, pPha-T1-eGFP plasmid was constructed with egfp gene. Stable nuclear transformation was carried out with these plasmids by particle bombardment method and zeocin resistant colonies of P. tricornutum were selected on f/2 agar plate. In result, transformation efficiency was evaluated according to the amount of plasmid DNA coated with gold particles. Integration of introduced plasmids was confirmed with genomic DNA of each transformant by polymerase chain reaction. The eGFP fluorescence was visible in the cytoplasm, indicating that eGFP was successively expressed in P. tricornutum system. The transcript level of exogenous Pthdr gene was evaluated with the obtained transformants. The results presented here demonstrated that introduction of Pthdr gene into P. tricornutum chromosome succeeded and expression of PtHDR was enhanced under the fcpA promoter.

Analysis of the effects of δ-Aminolevulinic acid on the proliferation and apoptosis of mammalian cells (포유류 세포주에서 δ-Aminolevulinic acid (ALA)의 세포증식과 사멸에 미치는 영향분석)

  • Jun, Yong-Woo;Kim, Kun-Hyung;Jo, Su-Yeon;Lee, Jin-A;Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.223-227
    • /
    • 2014
  • ${\delta}$-Aminolevulinic acid (ALA) is a compound which is widely present in the biosphere and plays an important role in the living body as an intermediate of the tetrapyrrole compound biosynthesis pathway that leads to heme in mammals and chlorophyll in plants. ALA is of interest as a biodegradable mediator, a growth regulator, a precursor of heme proteins, and an effective agent used in therapy of cancer. It has been recently reported that ALA is commonly used in dermatology, due to good effects of skin therapy. Although for the last few decades a substantial amount of research has been focused on the elucidation of the mechanism of ALA and the improvement of its therapeutic activity, it's effect on the cell functions and growth was not cleared. Here, we identified that ALA treatment could attenuate cell proliferation of HEK293T and HaCaT cells. In addition, ALA treatement could induce apoptosis of HeLa cells. These results suggest that apoptosis induced by ALA treatment might be responsible for inhibition of cell proliferation. These results propose the possibility of the improved therapeutic strategy making ALA one of the effective drugs used in human cancers.

Relationship of Fitness and Substance of Porphyrin Biosynthesis Pathway in Resistant Transgenic Rice to Protoporphyrinogen Oxidase (Protox) Inhibitor (Protoporphyrinogen oxidase (Protox) 저해제 저항성 형질전환 벼의 적응성과 Porphyrin 생합성 경로물질과 관련성)

  • Yun, Young-Beom;Kwon, Oh-Do;Back, Kyoung-Whan;Lee, Do-Jin;Jung, Ha-Il;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.134-145
    • /
    • 2011
  • The objectives of this study were to investigate fitness difference in growth and rice yield in herbicide-transgenic rice overexpressing Myxococcus xanthus and Arabidopsis thaliana protoporphyrinogen oxidase (Protox) genes and non-transgenic rice. We also aimed to determine whether these fitness differences are related to ALA synthesizing capacity, accumulation of terapyrroles, reactive oxygen species, lipid peroxidation, and antioxidative enzymes at different growth stages of rice. Plant height of the transgenic rice overexpressing M. xanthus (MX) and A. thaliana (AP37) Protox genes at 43, 50, and 65 days after transplanting (DAT) was significantly lower than that of WT. Number of tiller of PX as well as MX and AP37 at 50 and 65 DAT was significantly lower than that of WT. At harvest time, culm length and yield of MX, PX and AP37 and rice straw weight of MX and AP37 were significantly low compared with WT. The reduction of yield in MX, PX, and AP37 was caused by spikelets per panicle and 1000 grain weight, ripened grain, spikelets per panicle, 1000 grain weight, and ripened grain, respectively. On the other hand, 135 the reduction of yield in MX, PX, and AP37 was also observed in another yearly variation experiment. The reduction of rice growth in MX, PX, and AP37 was observed in seedling stage as well as growth duration in field. There were no differences in tetrapyrrole intermediate Proto IX, Mg-Proto IX and Mg-Proto IX monomethyl ester, reactive oxygen species ($H_2O_2$ and ${O_2}^-$), MDA, antioxidative enzymes (SOD, CAT, POX, APX, and GR) and chlorophyll between transgenic lines and wild type, indicating that accumulated tetrapyrrole intermediate and other parameters were not related to growth reduction in transgenic rice. However, ALA synthesizing capacity in MX, PX, and AP37 at one day after exposure to light and 52 DAT was significantly lower than that of WT. Further study is required to elucidate the mechanisms underlying the growth and yield difference between transgenic and WT lines.