• Title/Summary/Keyword: chlorophyll a oxygenase

Search Result 6, Processing Time 0.019 seconds

Alteration of Gas Exchange in Rice Leaves Infected with Magnaporthe grisea

  • Yun, Sung-Chul;Kim, Pan-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • Infection with rice blast fungus (Magnaporthe grisea) significantly reduced foliar net photosynthesis (A) of rice cultivars: Ilpoom, Hwasung, and Choochung in greenhouse experiments. By measuring the amount of diseased leaf area with a computer image analysis system, the relation between disease severity (DS) and net photosynthetic rate was curvilinearly correlated (r=0.679). Diseased leaves with 35% blast symptom can be predicted to have a 50% reduction of photosynthesis. The disease severity was linearly correlated (r=0.478) with total chlorophyll (chlorophyll a and chlorophyll b) per unit leaf area(TC). Light use efficiency was reduced by the fungal infection according to the light response curves. However, dark respiration (Rd) did not change after the fungal infection (p=0.526). Since the percent of reduction in photosynthesis greatly exceeded the percent of leaf area covered by blast lesions, loss of photosynthetic tissue on an area basis could not by itself account for the reduced photosynthesis. Quantitative photosynthetic reduction can be partially explained by decreasing TC, but cannot be explained by decreasing Rd. By photosynthesis (A)-internal CO$_2$ concentration (C$_i$ curve analysis, it was suggested that the fungal infection reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, ribulose-1,5-bisphosphate (RuBP) regeneration, and inorganic phosphate regeneration. Thus, the reduction of photosynthesis by blast infection was associated with decreased TC and biochemical capacity, which comprises all carbon metabolism after CO$_2$ enters through the stomata.

  • PDF

Effects of supplementary UV-B radiation on growth and protein biosyntheses in rice (Oryza sativa L.)

  • Takeuchi, Atsuko;Hidema, Jun;Kumagai, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.332-334
    • /
    • 2002
  • We examined the effects of supplementary ultraviolet-B (UV-B) radiation on the changes in synthesis and degradation of ribulose-I, 5-biphosphate carboxylase /oxygenase (Rubisco) and light-harvesting chlorophyll a/b binding protein of PSII (LHCII), as well as mRNA levels for small and large subunits of Rubisco (rbcS and rbcL, respectively) and LHCII (cab) with leaf age in UV-sensitive rice (Norin I) and UV-resistant rice (Sasanishiki). Both Rubisco and LHCII were actively synthesized until the leaf had fully expanded, and then decreased with leaf age. Synthesis of Rubisco, but not LHCII, was significantly suppressed by UV-B in Norin 1. The degradation of Rubisco was enhanced by UV-B around the time of the leaf maturation in the two cultivars. The levels of rbcS and rbcL were reduced by UV-B at the early leaf stages after emergence in both cultivars. The level of cab was first present at the highest level in the two cultivars, but drastically decreased due to UV-B treatment immediately after leaf emergence in Norin 1. It was proved that synthesis and degradation of Rubisco and LHCII greatly changed with leaf age: Rubisco synthesis was significantly suppressed by supplementary UV-B radiation at the transcription step during the early leaf stages. It was also suggested that the difference between the two rice cultivars in sensitivity to UV-B in the synthesis of Rubisco might be due to the specific suppression not only after transcription but also at transcription.

  • PDF

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

Light Regulated Plant Gene Expression (빛에 의한 식물 유전자의 발현)

  • 한태룡
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.63-79
    • /
    • 1987
  • Light regulates a variety of genes in higher plants. The expression of light-induced plant genes is regulated at the level of transcription via red- light photomorphogenic receptor, phytochrome, as well as unknown blue light photoreceptor(s). Ribulose-5-phosphate carboxylase/oxygenase (Rubisco) small subunit (SSB) and light harvesting chlorophyll a/b (Cab) protein are those of the best understood genes regulated by light. 5'-upstream flanking sequence (- -400) of Rubisco SSB and Cab genes sis known as a light responsive, enhance-like element. It responses to red and blue light in transgenic plant system as a tissue specific manner. Phytochrome gene is also regulated by light. In contrast to most of the light regulated plant genes, it is negatively controlled by red light. Search for the cis- and trans-acting factors responsible for the light signal is in progress to understant photomorphogenesis and development in higher plants.

  • PDF

The Visible Injury and Physiological Responses of Two Varieties of Glycine max to Ozone (오존에 의한 두 품종 콩의 가시피해 및 생리적 반응)

  • Yun Sung-Chul;Park Eun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.167-174
    • /
    • 2000
  • A glass chamber experiment was conducted to evaluate the impact of ozone (O$_3$) on the physiology of two soybean, Glycine max L. cultivars, 'Hwanggum' and 'Jangyub'. Thirty-day old plants with 1-2 nodes were exposed to $O_3$ of <10 and 150 n1 1$^{-1}$ in the chambers for 8 h d$^{-1}$ for 3 days. Net photosynthesis, stomatal conductance, chlorophyll a, chlorophyll b and total chlorophyll contents, and foliar injury (% injured leaves) were measured. Although foliar damage was more severe on Jangyub than on Hwanggum, net photosynthesis was decreased by 60% on Hwanggum and 13% on Jangyub due to the $O_3$ treatment. Stomatal conductance on Jangyub was twice higher than that on Hwanggum and it was not changed by the $O_3$ treatment. Whereas, stomatal conductance on Hwanggum was 60-80% decreased by $O_3$, Chlorophyll contents did not change due to the $O_3$ treatment or variety. We can conclude that the reduction of net photosynthesis by $O_3$ was mainly due to the decreases of stomatal conductance and Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) activity on dark reaction. And foliar injury and chlorophyll content did not contribute to the net photosynthetic decrease. The gas-exchange variables measured 24 h after the termination of $O_3$ fumigation showed that there was no significant recovery within a day. Since the physiological responses on Jangyub were not much affected by the $O_3$ treatment, this variety could be $O_3$ resistant.

  • PDF

Cloning and Expression of a Rice cDNA Encoding a Lls1 Homologue of Maize

  • Jwa, Nam-Soo;Park, Sang-Geun;Park, Chan-Ho;Kim, Soon-Ok;Ahn, Il-Pyung;Park, Sook-Young;Yoon, Choong-Hyo;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.151-155
    • /
    • 2000
  • A cDNA (Oslls1) encoding Lls1-homologue of maize was isolated from cDNA library of rice (Oryza sativa cv. Ilpum). The 2,138 bp of full length Oslls1 clone contains an open reading frame of 1,623 nucleotides encoding 575 amino acid residues. The deduced amino acid sequence of Oslls1 has a high level of homology with chlorophyll a oxygenases of Arabidopsis thaliana (67%) and Marchantia polymorpha (65%). Southern blot analysis of genomic DNA indicates the existence of a small gene family for Oslls1 in the rice genome. The expression of Oslls1 mRNA was induced in leaves and germinating seeds. Treatment of $H_2O$$_2$significantly down-regulated Oslls1 expression. The expression of Oslls1 mRNA was consititutively down-regulated in the blm, a rice mutant exhibiting spontaneous necrotic lesions. These results suggest that this Oslls1 gene may be involved incell death mechanisms in the blm mutant of rice.

  • PDF