• 제목/요약/키워드: chlorophyII-protein complexes

검색결과 2건 처리시간 0.015초

Effects of Light on Disassembly of Chloroplast during Senescence of Detached Leaves in Phaseolus vulgaris

  • Dong-Hee Lee;Jun
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.69-80
    • /
    • 1992
  • Effects of light on leaf senescence of Phseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves which had been kept in the dark or under light. The loss of chlorophyll accompanied by degradation of chlorophyll- protein complexes. PSI (photosystem I) complex containing LHCI (light harvesting complex of PSI) apoproteins was rapidly decreased after the early stage of dark-induced senescence. RC(reaction center)-Cores was slightly increased until 4 d and slowly decreased thereafter. As disassembly of LHCII trimer progressed after the late stage of senescence, there was a steady increase in the relative amount of SC(small complex)-2 containing LHCII monomer. On the other hand, white and red light adaptation caused the structural stability of chlorophyll-protein complexes during dark-induced senescence. Particularly, red light was more effective in the retardation of LHCII breakdown than white light, whereas white light was slightly effect in protecting the disassembly of PSI complex compared to red light. These results suggest, therefore, that light may be a regulatory factor for stability of chlorophyll-protein complexes in the senescent leaves.

  • PDF

Leaf Senescence in a Stay-Green Mutant of Arabidopsis thaliana: Disassembly Process of Photosystem I and II during Dark-Incubation

  • Oh, Min-Hyuk;Kim, Yung-Jin;Lee, Choon-Hwan
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.256-262
    • /
    • 2000
  • In this study the disassembly process of chlorophyII (ChI)protein complexes of a stay-green mutant (ore10 of Arabidopsis thaliana) was investigated during the dark incubation of detached leaves. During this dark-induced senescence (DIS), the Chi loss was delayed in the mutant, while the photochemical efficiency of photosystem II (PSII) or Fv/Fm was accelerated when compared with the wild type (WT) leaves. This indicates that the decrease in Fv/Fm is a separate process and not causally-linked to the degradation of Chi during DIS of Arabidopsis leaves. In the native green gel electrophoresis of the Chi-protein complexes, which was combined with an additional twodimensional SDS-PAGE analysis, the delayed senescence of this mutant was characterized by the appearance of an aggregate at 1 d or 2 d, as well as very stable light harvesting complex II (LHCII) trimers until 5 d after the start of DIS. The polypeptide composition of the aggregates varied during the whole DIS at 5 d. Dl protein appeared to be missing in the aggregates. This result supports the idea of a faster depletion of functional PSH in the mutants compared with WT, as suggested by the earlier reduction of Fv/Fm and the stable Chl a/b ratio in the mutants. At 5 d, the WT leaves also often showed aggregates, but the polypeptide composition was different from those of ore10. The results presented suggest that the formation of aggregates, or stable LHCII trimers in the stay-green mutants, is a way to structurally protect Chi-protein complexes from serious proteolytic degradation. Detailed disassembly processes of Chi-protein complexes in WT and ore10 mutants are discussed.

  • PDF