• Title/Summary/Keyword: chlorinated solvents

Search Result 34, Processing Time 0.021 seconds

Occupational Exposure to Trichloroethylene and Non-hodgkin Lymphoma Risk (직업적 트리클로로에틸렌 노출과 비호지킨림프종의 연관성)

  • Chun, Jae-Buhm;Han, So-Hee;Yoon, Hyung-Suk;Lee, Eun-Jung;Lee, Kyoung-Mu
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.5
    • /
    • pp.358-368
    • /
    • 2011
  • Objectives: In order to evaluate the association between occupational exposure to chloroethylene (TCE) and risk of non-Hodgkin lymphoma (NHL), we conducted a meta-analysis of retrospective cohort studies and casecontrol studies and attempted to summarize the evidence of the association from molecular-epidemiological studies and experiments with human cells. Methods: In the meta-analysis, we restricted the analysis to those studies with data for chlorinated solvents, degreasers, or TCE. Studies involving dry cleaners or launderers were excluded from the analysis because use of TCE as a dry cleaning fluid has been rare since the 1960s. The data were combined using a random-effects model to estimate the summary risks (OR and RR) and 95% confidence intervals (CIs). Molecular evidence of the effect of TCE on human immune system were also reviewed and summarized. Results: Occupational exposure to TCE was strongly associated with NHL among cohort studies (number of studies=13, summary RR=1.33, 95% CI=1.04-1.70) whereas the association was not statistically significant among case-control studies (number of studies=15, summary OR=1.10, 0.98-1.23). When exposure level was considered, it became statistically significant for the highest exposure level (number of studies=5, summary OR=1.70, 1.25-2.32). Molecular evidences showed that TCE exposure in human or cultured human cells may cause a significant decrease immune cell subsets and changes in hormone levels related to immune response. Conclusions: Our results from meta-analysis and additional molecular evidence suggest that occupational exposure to TCE may cause NHL. However, unmeasured potential confounding and unclear dose-response relationships warrant further study on the role of TCE exposure in NHL carcinogenesis.

Analytical Method for Dioxin and Organo-Chlorinated Compounds: (Ⅱ) Comparison and Extraction Methods of Dioxins from XAD-2 Adsorbent

  • 양정수;이성광;박영훈;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.689-695
    • /
    • 1999
  • Supercritical fluid extraction (SFE), ultrasonic extraction (USE), and accelerated solvent extraction (ASE) were compared with the well known Soxhlet extraction for the extraction of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins(PCDDs) from the XAD-2 resin which was used to adsorb PCDDs in the atmosphere. XAD-2 resin spiked with five PCDDs was chosen as a sample. The optimum conditions for the extraction of PCDDs by SFE were turned out to be the use of CO2 modified with 10% toluene at 100 ℃ and 350 atm, with 5 min static extraction followed by 20 min dynamic extraction. SFE gave a good extraction rate with good reproducibility for PCDDs ranging from 68 to 98%. The ultrasonic extraction of PCDDs from XAD-2 was investigated and compared with other extractions. A probe type method was compared with a bath type. Two extraction solvents, toluene and acetone were compared with their mixture. The use of their mixture in probe type, with 9 minutes of extraction time, was found to be the optimum condition. The average recovery of the five PCDDs for USE was 82-93%. Accelerated solvent extraction (ASE) with a liquid solvent, a new technique for sample preparation, was performed under elevated temperatures and pressures. The effect of tem-perature on the efficiency of ASE was investigated. The extraction time for a 10 g sample was less than 15 min, when the organic solvent was n-hexaneacetone mixture (1 : 1, v/v). Using ASE, the average recoveries of five PCDDs ranged from 90 to 103%. SFE, USE, and ASE were faster and less laborious than Soxhlet extraction. The former three methods required less solvent than Soxhlet extraction. SFE required no concentration of the solvent extracts. SFE and ASE failed to perform simultaneous parallel extractions because of instrumental limitations.

A Study on Persulfate Oxidation to Remove Chlorinated Solvents (TCE/PCE) (과황산(persulfate) 산화반응을 이용한 염소계 화합물(TCE, PCE) 분해에 관한 연구)

  • Song, Kyoung-Ho;Do, Si-Hyun;Lee, Hong-Kyun;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.549-556
    • /
    • 2009
  • In situ chemical oxidations (ISCO) are technologies for destruction of many contaminants in soil and groundwater, and persulfate has been recently studied as an alternative ISCO oxidant. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were chosen for target organic compounds. The objective of this study is to demonstrate the influence of initial pH (3, 6, 9, 12), oxidant concentrations (0.01, 0.05, 0.1, 0.3, 0.5 M), and contaminants concentrations (10, 30, 50, 70, 100 mg/L) on TCE/PCE degradation by persulfate oxidation. The maximum TCE/PCE degradation occurred at pH 3, and the removal efficiencies with this pH condition were 93.2 and 89.3%, respectively. The minimum TCE/PCE degradation occurred at pH 12, and the removal efficiencies were 55.0 and 31.2%, respectively. This indicated that degradation of TCE/PCE decreased with increasing the initial pH of solution. Degradation of TCE/PCE increased with increasing the concentration of persulfate and with decreasing the concentration of contaminants (TCE/PCE). The optimum conditions for TCE/PCE degradation were pH 3, 0.5 M of persulfate solution, and 10 mg/L of contaminant concentration. At these conditions, the first-order rate constants ($k_{obs}$) for TCE and PCE were 1.04 and 1.31 $h^{-1}$, respectively.

A Study for Reductive Degradation and Surface Characteristics of Hexachloroethane by Iron Sulfide ($FeS,\;FeS_{2}$) (황화철($FeS,\;FeS_{2}$)을 이용한 헥사클로로에탄의 환원적 분해반응과 표면특성에 관한 연구)

  • Park Sang-Won;Kim Sung-Kuk;Heo Jae-Eun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.35-42
    • /
    • 2006
  • The following results were obtained in the reductive degradation of hexachloroethane (HCA), and surface characteristics by using iron sulfide ($FeS,\;FeS_{2}$) mediators. HCA was degraded to pentachloroethane (PCA), tetrachloroethylene(PCE), trichloroethylene(TCE) and cis-l,2-dichloroethylene (cis-1,2-DCE) by complicated pathways such as hydrogenolysis, dehaloelimination and dehydrohalogenation. FeS had more rapid degradation rates of organic solvent than $FeS_{2}$. In liquidsolid reaction, the reaction rates of organic solvents were investigated to explain surface characteristics of FeS and $FeS_{2}$.. To determine surface characteristics of FeS and $FeS_{2}$, the specific surface area and surface potential of each mineral was determined and the hydrophilic site ($N_{s}$) was calculated. The specific surface area ($107.0470m^{2}/g\;and\;92.6374m^{2}/g$) and the $pH_{ZPC}$ of minerals ($FeS\;PH_{ZPC}=7.42,\;FeS_{2},\;PH_{ZPC}=7.80$) were measured. The results showed that the Ns of FeS and $FeS_{2}$ were $0.053\;site/mm^{2}\;and\;0.205\;site/mm^{2}$, respectively. $FeS_{2}$ had more hydrophilic surface than FeS. In other words, FeS have more hydrophobic surface site than $FeS_{2}$.