• Title/Summary/Keyword: chloride profile

Search Result 80, Processing Time 0.027 seconds

Variation of Critical Chloride Content of Rebar Embedded in Concrete with Admixture (혼화재 혼입에 따른 콘크리트에 매립된 철근의 부식 임계 염화물량의 변화)

  • Park, Jang-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.511-520
    • /
    • 2019
  • The critical chloride content of rebar embedded in concrete was experimentally evaluated according to the admixture replacement ratio and admixture type. Four types of reinforced concrete were mixed OPC 100%, OPC 70% + GGBFS 30%, OPC 40% + GGBFS 60%, and OPC 40% + GGBFS 40% + FA 20%. NaCl solution was supplied to the specimens, and the open circuit potential of the embedded rebar was monitored. The specimens determined to initiate corrosion were cut at intervals of 5mm from the NaCl solution supply surface and conducted to chlorine ion profile. Corrosion initiation time of rebar embedded in concrete was delayed as the admixture replacement ratio increased. Looking at the critical chloride content of the types of reinforced concrete, it was highest in OPC 1.46kg/㎥, followed in order by S30 0.98kg/㎥, TBC 0.74kg/㎥, and S60 0.71kg/㎥.

Modeling of Environmental Response for Concrete Durability

  • Yoon, In-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.56-61
    • /
    • 2012
  • The most common deterioration cause of concrete structures over the world is chloride ions attacks. Thus, service life modeling of concrete is a crucial issue in civil engineering society. Many studies on the durability of concrete have been accomplished, however, it is not easy to review literatures about environmental analysis. Since the durability of concrete depends on the properties of the surface concrete. micro-climatic condition which influences on surface concrete realistically should be considered. This study is devoted to analysis the micro-climatic condition of concrete structures, based on the in-situ monitoring of weather in marine environment. The effect of degree of saturation on chloride diffusivity of concrete is also examined. It is expected that the result of this work should be available for the prediction of chloride profile of marine concrete.

  • PDF

Antileishmanial Activity of Niosomal Combination Forms of Tioxolone along with Benzoxonium Chloride against Leishmania tropica

  • Parizi, Maryam Hakimi;Farajzadeh, Saeedeh;Sharifi, Iraj;Pardakhty, Abbas;Parizi, Mohammad Hossein Daie;Sharifi, Hamid;Salarkia, Ehsan;Hassanzadeh, Saeid
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.359-368
    • /
    • 2019
  • In this study, we carried out extensive in vitro studies on various concentrations of tioxolone along with benzoxonium chloride and their niosomal forms against Leishmania tropica. Niosomes were prepared by the hydration method and were evaluated for morphology, size, release study, and encapsulation efficiency. This study measured leishmanicidal activity against promastigote and amastigote, apoptosis and gene expression levels of free solution and niosomal-encapsulated tioxolone along with benzoxonium chloride. Span/Tween 60 niosome had good physical stability and high encapsulation efficiency (more than 97%). The release profile of the entrapped compound showed that a gradual release rate. The combination of niosomal forms on promastigote and amastigote were more effective than glucantime. Also, the niosomal form of this compound was significantly less toxic than glucantime ($P{\leq}0.05$). The flowcytometric analysis on niosomal form of drugs showed that higher number of early apoptotic event as the principal mode of action (89.13% in $200{\mu}g/ml$). Also, the niosomal compound increased the expression level of IL-12 and metacaspase genes and decreased the expression level of the IL-10 gene, which further confirming the immunomodulatory role as the mechanism of action. We observed the synergistic effects of these 2 drugs that induced the apoptotic pathways and also up regulation of an immunomodulatory role against as the main mode of action. Also, niosomal form of this combination was safe and demonstrated strong anti-leishmaniasis effects highlights further therapeutic approaches against anthroponotic cutaneous leishmaniasis in future planning.

Parametric studies on convection during the physical vapor transport of mercurous chloride ($Hg_2Cl_2$)

  • Kim, Geug-Tae;Lee, Kyong-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.281-289
    • /
    • 2004
  • The temperature hump is found to be most efficient in suppressing parasitic nucleation. With the temperature humps, there are found to be observed in undersaturations along the transport path for convective-diffusive processes ranging from $D_{AB}$ = 0.0584 $\textrm{cm}^2$/s to 0.584 $\textrm{cm}^2$/s, axial positions from 0 to 7.5 cm. With decreasing Ar = 5 to 3.5, the temperature difference is increased because of the imposed nonlinear temperature profile but the rate is decreased. For 2 $\leq$ Ar $\leq$ 3.5, the rate is increased with the aspect ratio as well as the temperature difference. Such an occurrence of a critical aspect ratio is likely to be due to the effect of sidewall and much small temperature difference. The rate is decreased exponentially with the aspect ratio for 2 $\leq$ Ar $\leq$ 10. Also, the rate is exponentially decreased with partial pressure of component B, P for 1 $\leq$ P $\leq$ 100 Torr.$ B/ $\leq$ 100 Torr.

Design and Optimization of Solid Dispersed Osmotic Pump Tablets of Aceclofenac, A Better Approach to Treat Arthritis

  • Edavalath, Sudeesh;Rao, B. Prakash
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.217-225
    • /
    • 2011
  • The aim of this work was to prepare porous osmotic pump tablets for controlled delivery of Aceclofenac. Aceclofenac solid dispersion was prepared to improve the solubility by using the drug - carrier (Mannitol) ratio of 1:1. The osmotic pump tablets were prepared using the solid dispersed product of Aceclofenac. The formulation contains potassium chloride as osmotic agent, cellulose acetate as semipermeable membrane, poly ethylene glycol (PEG 4000) as pore former and sodium lauryl sulphate (SLS) as solubility enhancer. The formulations were designed by the general factors such as osmotic agent and pore former. All formulations were evaluated for various physical parameters and, the in vitro release studies were conducted as per USP. The drug release kinetic studies such as zero order, first order, and Higuchi and Korsmeyer peppas were determined and compared. All the formulations gave more controlled release compared to the marketed tablet studied. Numerical optimization techniques were applied to found out the best formulation by considering the parameter of in vitro drug release kinetics and dissolution profile standards. It was concluded that the porous osmotic pump tablets (F7) composed of Aceclofenac solid dispersion/Potassium chloride/Lactose/Sodium lauryl sulphate/Magnesium Stearate (400/40/95/10/5, mg/tab) and coating composition with Cellulose acetate/ PEG 4000 (60/40 %w/w) is the most satisfactory formulation. The porous osmotic pump tablets provide prolonged, controlled, and gastrointestinal environment-independent drug release.

Preparation of Sodium Alginate Microspheres Containing Hydrophilic $\beta-lactam$ antibiotics

  • Chun, Kyung-Hee;Kwon, Ick-Chan;Kim, Yong-Hee;La, Sung-Bum;Sohn, Young-Taek;Seo, Young-Jeong
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.106-111
    • /
    • 1996
  • Alginate microspheres were prepared by the emulsification process as a drug delivery system of ampicillin sodium (AMP-Na). The preparation parameters such as the concentration of calcium chloride, the stirring time and the amount of AMP-NA were investigated. The alginate microspheres containing hydroxypropylmethylcellulose (HPMC) were found to be generally spherical, discrete and had smoother surfaces when compared to without HPMC. However, there was no significant difference in the release profile of AMP-NA from alginate microspheres prepared with or without HPMC. The concentration of calcium chloride solution and the stirring time in the preparation of alginate microspheres influenced the aggregation of alginate microspheres. The amount of AMP-NA in alginate microspheres influenced the surface morphology and the practical drug content in microspheres.

  • PDF

Hepatic Gene Expression Analysis of Gadolinium Chloride Treated Mice

  • Jeong, Sun-Young;Lim, Jung-Sun;Hwang, Ji-Yoon;Kim, Yong-Bum;Kim, Chul-Tae;Lee, Nam-Seob;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Gadolinium chloride ($GdCl_{3}$) was known to block Kupffer cells and generally its toxicity study based on blocking these cells. Therefore, $GdCl_{3}$ frequently used to study toxic mechanisms of hepatotoxicants inducing injury through Kupffer cells. We also tried to investigate the effect of $GdCl_{3}\;on\;CCl_{4}$ toxicity, typical hepatotoxicants. Administration of $GdCl_{3}$ to mice significantly suppressed AST (asparatate amino transferase), ALT (alanine amino transferase) levels which were increased by $CCl_{4}$ treatment. However, $GdCl_{3}$ didn't inhibit the phagocytotic activity of Kupffer cells. Malondialdehyde (MDA) is a good indicator of the degree of lipid peroxidation. In this study, MDA increased by $GdCl_{3}$ administration not by $CCl_{4}$. To understand the toxicity of $GdCl_{3}$, we analyzed global gene expression profile of mice liver after acute $GdCl_{3}$ injection. Four hundred fifty two genes were differentially expressed with more than 2-fold in at least one time point among 3 hr, 6 hr, and 24 hr. Several genes involved in fibrogenesis regulation. Several types of pro-collagens (Col1a2, Col5a2, Col6a3, and Col13a1) and tissue inhibitor of metal-loproteinase1 (TIMP1) were up regulated during all the time points. Genes related to growth factors, chemokines, and oxidative stress, which were known to control fibrogenesis, were significantly changed. In addition, $GdCl_{3}$ induced abnormal regulation between lipid synthesis and degradation related genes. These data will provide the information about influence of $GdCl_{3}$ to hepatotoxicity.

Hypolipidemic Activities of Dietary Pleurotus ostreatus in Hypercholesterolemic Rats

  • Alam, Nuhu;Yoon, Ki-Nam;Lee, Tae-Soo;Lee, U-Youn
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • This work was conducted to investigate dietary supplementation of oyster mushroom fruiting bodies on biochemical and histological changes in hyper and normocholesterolemic rats. Six-week old female Sprague-Dawley albino rats were divided into three groups of 10 rats each. Feeding a diet containing a 5% powder of Pleurotus ostreatus fruiting bodies to hypercholesterolemic rats reduced plasma total cholesterol, triglyceride, low-density lipoprotein (LDL), total lipid, phospholipids, and LDL/high-density lipoprotein ratio by 30.18, 52.75, 59.62, 34.15, 23.89, and 50%, respectively. Feeding oyster mushrooms also significantly reduced body weight in hypercholesterolemic rats. However, it had no adverse effects on plasma albumin, total bilirubin, direct bilirubin, creatinin, blood urea nitrogen, uric acid, glucose, total protein, calcium, sodium, potassium, chloride, inorganic phosphate, magnesium, or enzyme profiles. Feeding mushroom increased total lipid and cholesterol excretion in feces. The plasma lipoprotein fraction, separated by agarose gel electrophoresis, indicated that P. ostreatus significantly reduced plasma ${\beta}$ and pre-${\beta}$-lipoprotein but increased ${\alpha}$-lipoprotein. A histological study of hepatic cells by conventional hematoxylin-eosin and oil red O staining revealed normal findings for mushroom-fed hypercholesterolemic rats. These results suggest that a 5% P. ostreatus diet supplement provided health benefits by acting on the atherogenic lipid profile in hypercholesterolemic rats.

Effect of Phosphate and Citrate Salts on the Emulsion Stability of Soy Protein Isolate in the Presence of Calcium (칼슘 존재하에서 인산과 구연산업이 분리대두단백질의 유화 안정성에 미치는 영향)

  • Kim, Yeong-Suk;Yeom, Dong-Min;Hwang, Jae-Gwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 1994
  • The effect of phosphate salt (NafHP04) and sodium citrate on the emulsion stability of soy protein isolate (SPI) in the presence of calcium was investigated in terms of salt concentration and addition order. Both phosphate and citrate salts decreased the solubility of SPI despite their pH enhancing effects. Addition of calcium chloride (CaCl2) significantly decreased ES, which showed nearly negligible at more than 3 mM CaCl2 concentration. When Na2HP04 were added in the presence of 5 mM Cac12, 55 greatly increased up to 20mM concentration, above which however ES decreased. It was found that the addition order of Na2HPO4 and CaCl2 affected ES. The addition of phosphate and subsequent CaCl2 exhibited the higher 55 than the reverse order. In both cases, the overall ES profile was found to be nearly similar to the solubility profile of SPI, indicating the positive relationship between solubility and emulsion stability of SPI in the presence of calcium. Similar trend to the phosphate effect on ES was also observed for sodium citrate in the presence of calcium.

  • PDF

Design of Aerosol Generator for Inhalation Toxicology Study of Lead and Evaluation with Real Time Monitoring (납의 흡입독성 연구를 위한 에어로졸 발생장치의 고안 및 실시간 모니터링을 이용한 성능평가)

  • Jeung Jae Yeal;Kim Jung Man;Kim Tae Hyeung;Chong Myoung Soo;Ko Kwang Jae;Kim Sang Duck;Kang Sung Ho;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.373-379
    • /
    • 2002
  • This paper was the design of aerosol generator for inhalation toxicology study of lead and evaluation with real time monitoring, and applied several engineering methodology to classical aerosol generator to cope with it's disadvantages. According to the testing conditions, source temperature 50℃ and inlet-duct band heater temperature 150℃, aerosol generation results for sodium chloride and lead acetate were as followings: CPM(Count Per Minute) for Sodium chloride that used for the testing material in aerosol generation and inhalation system was decreased in the 2nd and the 3rd hour's serial trials, but CVs(coefficient of variation) were maintained within 10%. CPMs for 5 and 2.5 gram of lead acetate that used for aerosol generation and inhalation exposure of lead showed similar results because of the sedimentation of lead acetate on piezoelectric crystal with time. For that reason, heating and mixing of nebulizing solution will be needed to generate lead aerosol with stable profile and maximum generation efficiency. Fluctuations of 10 and 5 gram lead acetate were low but 2.5gram was high. However, CVs for 10, 5, and 2.5gram lead acetate were within 10%. Considering the theoretical efficiencies for sodium chloride and lead acetate, 5gram sodium chloride and 2.5gram lead acetate were appropriate choice. Aerosol generation characteristics for two materials with 1 hour interval were different with respect to the fluctuation of CPM and the decrease to 10gram in it's material. For that reason, sodium chloride can not be used to estimate the aerosol generation and it's related parts for lead acetate. According to the testing conditions, source temperature 20, 50, 70℃, and inlet-duct band heater temperature 20, 50, 100, 150, 200℃, aerosol generation results for sodium chloride and lead acetate were as followings: Excluding inlet-duct band temperature 200℃, maximum CPM for sodium chloride was manifested in source temperature 70℃ with each inlet-duct band temperature conditions. We suggest that this condition was the optimum in the design of aerosol generator, inhalation system, and the testing. Maximum CPMs for 10, 5, and 2.5gram sodium chloride were from source temperature 70℃ and inlet-duct band temperature 20℃. Excluding inlet-duct band temperature 50, 200℃, maximum CPMs for lead acetate were indicated in source temperature 50℃ with each inlet-duct band temperature conditions. We suggest that this condition was the optimum in the design of aerosol generator, inhalation system, and the testing for lead inhalation study. Source and inlet-duct band temperatures for 10, 5, 2.5gram lead acetate were 50 and 100℃, 50 and 100℃, 50 and 150℃, respectively. In conclusion, considering above 2 paragraphs of results for aerosol generation, 5gram efficiencies for sodium chloride, lead acetate were higher than 2.5gram's. If inlet-duct band temperature was same, aerosol generation was increased with increase of source temperature. To get maximum aerosol generation will be the conditions that set the appropriate inlet-duel band temperature for each materials and increase the source temperature.