• Title/Summary/Keyword: chlorella vulgaris

Search Result 146, Processing Time 0.025 seconds

Effects of volatile fatty acids on microalgae growth and N, P consumption in the advanced treatment process of digested food waste leachate by mixotrophic microalgae (Mixotrophic microalgae에 의한 음폐수 소화액 고도처리에 있어 유기산이 microalgae의 성장 및 질소, 인 제거에 미치는 영향)

  • Zhang, Shan;Hwan, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.357-362
    • /
    • 2017
  • Acetate, propionate, butyrate are the major soluble volatile fatty acids metabolites of fermented food waste leachates. This work investigate the effects of volatile fatty acid on the growth rate and $NH_4-N$, $PO_4-P$ removal efficiency of mixotrophic microalgae Chlorella vulgaris to treat digested food waste leachates. The results showed that acetate, propionate and butyrate were efficiently utilized by Chlorella vulgaris and microalgae growth was higher than control condition. Similar trends were observed upon $NH_4-N$ and $PO_4-P$ consumption. Volatile fatty acids promoted Chlorella vulgaris growth, and nutrient removal efficiencies were highest when acetate was used, and butyrate and propionate showed second and third. From this work it could be said that using mixotrophic microalgae, in this work Chlorella vulgaris, fermented food waste leachates can be treated with high efficiencies.

Extraction of Oil from Chlorella vulgaris Using Supercritical Carbon Dioxide and Organic Solvent (초임계 이산화탄소와 유기용매를 이용한 Chlorella vulgaris 오일의 추출)

  • Ryu, Jong-Hoon;Park, Mi-Ran;Lim, Giobin
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.98-105
    • /
    • 2014
  • Three different types of extraction processes, which used supercritical carbon dioxide ($SCCO_2$) and organic solvent, were attempted to improve the extraction yield of oil from Chlorella vulgaris: cosolvent-modified $SCCO_2$ extraction, $SCCO_2$ extraction with ultrasonic sample treatment in organic solvent, and static extraction with organic solvent followed by dynamic $SCCO_2$ extraction. Among these, the last $SCCO_2$ extraction process was found to be most effective in the extraction of oil. Compared with pure $SCCO_2$ extraction, the extraction yield of oil was observed to increase about 7 times.

Supercritical Carbon Dioxide Extraction of Oil from Chlorella vulgaris (초임계 이산화탄소를 이용한 Chlorella vulgaris의 오일 추출)

  • Ryu, Jong-Hoon;Park, Mi-Ran;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.453-458
    • /
    • 2011
  • In this study, two different extraction techniques, organic solvent extraction and supercritical carbon dioxide ($SCCO_2$) extraction, were employed to evaluate the extraction efficiency of oil from Chlorella vulgaris. In the organic solvent extraction, the effects of various organic solvent on the extraction yield were investigated. The $SCCO_2$ extraction was carried out while varying such operating parameters as temperature, pressure, $SCCO_2$ flow rate, and cosolvent. About 4.9 wt% of oil was extracted from ground Chrollera vulgaris for 18 h when dichloromethane/methanol (2:1, v/v) was used as an extraction solvent. The oil yield of the $SCCO_2$ extraction was found to be very low (0.53 wt%) and to increase up to about 0.86 wt% with the addition of cosolvent.

Chlorella cultivation for mass culture of rotifer, Brachionus Plicatilis I. Selection of suitable Chlorella species (Rotifer (Brachionus Plicatilis) 사육을 위한 Chlorella의 배양 1. 적종 Chlorella의 선택)

  • HUR Sung Bum;KIM Hyun-Jun
    • Journal of Aquaculture
    • /
    • v.1 no.2
    • /
    • pp.135-143
    • /
    • 1988
  • Rotifers became an important live food for fish larvae, especially for marine fishes, and Chlorella has been used as a very useful food for the mass culture of rotifer. However, not many tests for suitable Chorella species for the mass culture of rotifer were done and many of Chlorella sp. have been used without consideration of species for this purpose. There-fore, two species of marine Chlorella and four species of freshwater Chlorella were tested to select suitable species for the mass culture of a rotifer, Brachionus plicatilis. These Chlorella species were cultured in five different culture media; f/2, Erdschreiber, Complesal for marine species and S$\cdot$K, Wai and Complesal for freshwater species. Proximate analyses were done to see the protein, lipid and ash contents of a marine species, C. ellipsoidea and a freshwater species, C. vulgaris. Amino acids content of these species were also tested. C. ellipsoidea and C. vulgaris showed better growth than the other species. For marine Chlorella sp., f/2 media was better than Erdschreiber and Complesal. But for the freshwater species, Complesal showed the best result in growth. By the proximate analyses, C. ellipsoidea has higher lipid contents whereas C. vulgaris has higher protein and ash. In the analysis of amino acid of Chlorella, it was remarkable that freshwater Chlorella, C. vulgaris, has high content of $NH_3$ comparing with marine Chlorella, C, ellipsoidea. According to the above results, C. vulgaris seems have higher possibilities for mass culture of rotifer but further studies are needed.

  • PDF

Effect of Temperature, Light Intensity and pH on the Growth Rate of Chlorella Vulgaris (온도, 광세기 및 pH에 따른 Chlorella Vulgaris 증식률)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.511-515
    • /
    • 2011
  • The aim of this study was to investigate the efficiency of temperature, light intensity and pH on the growth rate of Chlorella vulgaris (C. vulgaris). The size of C. vulgaris (FC-16) was $3-8{\mu}m$, having round in shape. The cells of C. vulgaris (FC-16) was cultured in the Jaworski's Medium with deionized water. To evaluate the efficiency of temperature, light intensity and pH on the growth rate of C. vulgaris, six different fractions of temperature ($10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$), various light intensities ($100-800{\mu}Em^{-2}s^{-1}$) and seven different fractions of pH (3, 4, 5, 6, 7, 7.5, 9) were prepared. The growth rate of C. vulgaris cultivation was approximately 5.2 to 5.5 times faster, the concentration of Chlorophyll a was also 5 to 5.5 times higher, and cell volume per unit area was 14% higher at $25^{\circ}C$ to $30^{\circ}C$ than those at $10^{\circ}C$. Therefore, the optimal temperature for cultivation of C. vulgaris was estimated $25^{\circ}C$ to $30^{\circ}C$. The growth rate of C. vulgaris increased slowly up to 5 days, exploded after 5 days until 15 days, and then stoped after that. The optimum cultivation period of C. vulgaris was estimated as 15 days. The optimum pH for the growth rate of C. vulgaris was determined pH 7 to 7.5.

Isolation of Lipid High-yielding Chlorella vulgaris Mutants by UV Irradiation (자외선 조사에 의한 지질 고생산성 Chlorella vulgaris 변이주 분리)

  • Jeong, Haeng Soon;Choi, Min Kyung;Choi, Tae-O;Lee, Jae-Hwa
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • Chlorella vulgaris, a genus of single-cell green algae, is considered to be a very essential resource for the higher value-added business including functional food and biodiesel, due to its high contents of protein, carbohydrate and lipid. In this study, ultraviolet rays were irradiated in order to induce the mutation of C. vulgaris. After inducing the mutation, UV1-20 mutant, high in lipid was selected and its cell growth rate, dry weight, pigment content and lipid content were measured. The growth rate of the UV1-20 mutant was increased almost 1.5 times than the wild type, but pigment contents of chlorophyll and carotinoid were decreased. In addition, the lipid content of UV1-20 was increased 1.8 times than the wild type. Therefore, C. vulgaris mutant, isolated in this study, is considered to have sufficient potential to be used as a material for the higher value-added business.

Advanced wastewater treatment capacity and growth of Chlorella vulgaris by nitrogen and phosphorus concentrations (N, P 농도에 따른 Chlorella vulgaris의 성장 및 하수고도처리능 평가)

  • Han, Su-Hyun;Lee, Yunhee;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • The growth and removal capacity of nitrogen and phosphorus of Chlorella vulgaris were evaluated in artificial wastewater with different nitrogen and phosphorus concentrations as element growing components for microalgae growth. The nitrogen concentration was varied in 9, 15, 30 and 60 mg-N/L with fixed phosphorus concentration of 3 mg-P/L. The growth and phosphorus removal capacity of C. vulgaris were high at initial nitrogen concentration of 15 and 30 mg-N/L, and the corresponding N/P ratios calculated were 5 and 10. In the case of varying in 1.5, 3, 6 and 10 mg-P/L of phosphorus concentration with fixed nitrogen concentration of 30 mg-N/L, the growth and removal capacity of nitrogen and phosphorus were excellent with phosphorus concentration of 3 and 6 mg-P/L. The corresponding N/P ratios were shown as 10 and 5. Therefore, the appropriate N/P ratio was concluded between 5 and 10 for wastewater treatment using C. vulgaris.

Effects of the Spectral Quality and Intensity of Light-Emitting Diodes on Growth and Biochemical Composition of Chlorella vulgaris (발광다이오드 광량 및 파장에 따른 Chlorella vulgaris의 생장 및 생화학적 조성 변화 연구)

  • Ji Seung Han;Peijin Li;Tae-Jin Choi;Seok Jin Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.878-888
    • /
    • 2023
  • Growth responses of Chlorella vulgaris exposed to different light intensities and wavelengths of light-emitting diodes (LEDs) were investigated. C. vulgaris was cultured under red LED (650 nm), blue LED (450 nm), green LED (520 nm), and fluorescent lamps (three wavelengths, control). The maximum growth rates (µmax) of C. vulgaris were highest under the blue LED, followed by the red LED, green LED, and fluorescent lamps. The low compensation photon flux density (I0) and low half-saturation constants (Ks) were observed in C. vulgaris cultured under the red LED, indicating that high C. vulgaris growth is closely related to the low light intensity of the red LED suggesting that the red LED can be useful for the biomass production of C. vulgaris. Furthermore, it was observed that under the blue LED during the stationary phase, there was an increase in useful bioactive substances, such as proteins and lipids, which are beneficial for biomass production. In conclusion, the red LED is an economical light source that can enhance cell density, and the blue LED is effective in promoting valuable intracellular substances.

Impact of SV40 T antigen on two multiple fission microalgae species Scenedesmus quadricauda and Chlorella vulgaris

  • Gomaa, Ahmed E.;Yang, Seung Hwan
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.48-63
    • /
    • 2018
  • The combination of Simian Virus40 (SV40)'s large T antigen with its replication origin is commonly used in molecular studies to enhance the expression of heterogeneous genes through multiplying the plasmid copy number. There are no reports related to the impact of the SV40 T antigen on plant, multiple fissional, cell-type. This study explores the response of two multiple-fission microalgal cells, Scenedesmus quadricauda and Chlorella vulgaris, to the expression of the T-antigen, with aim of applying SV40 T-antigen to increase the expression efficiency of foreign genes in the two species. Different levels of low-expression have been constructed to control the expression of SV40 T antigen using three heterogenous promoters (NOS, CaMV35S, and CMV). Chlorella cultures showed slowdown in the growth rate for samples harboring the T antigen under the control of CaMV35S and CMV promoters, unlike Scenedesmus cultures which showed no significant difference between samples and could have silenced the expression.

Chlorella vulgaris Has Preventive Effect on Cadmium Induced Liver Damage in Rats

  • Shim, Jae-Young;Om, Ae-Son
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.138-143
    • /
    • 2008
  • We investigated if Chlorella vulgaris (CV) has protective effects on cadmium (Cd) induced liver damage in male Sprague-Dawley (SD) rats. Forty rats, aged 5 weeks old and weighed 90-110g, were divided into a control (with Cd free water), 50 ppm of $CdCl_2$ in drinking water treated groups (Chlorella 0% diet group (Cd/CV0%), Chlorella 5% diet group (Cd/CV5%) or Chlorella 10% diet group (Cd/CV10%). All the rats had freely access to water and diet for 8 weeks. The results show that body weight gain and relative liver weight had significantly lower in Cd/CV0%-treated group than in Cd/CV-treated groups. Hepatic Cd contents showed significantly less by feeding CV (P<0.05). Cd/CV0%-treated rats had significantly (P<0.05) higher hepatic T-MTs, and Cd-MTs concentrations, compared to Cd/CV5% or Cd/CV10% treated rats. The MT I/II mRNA was expressed in the liver of all experimental rats. Its expression was more increased in Cd/CV5%- or Cd/CV10%-treated rats, compared to control and Cd-treated rats. Thus, this study suggested that CV would have a protective effect on Cd-treated liver injury by the reduction of Cd concentrations and stimulation of Cd-MT binds in the liver. However, more studies are needed to identify the proper mechanism of CV and liver toxicity.