• Title/Summary/Keyword: chitosan fiber

Search Result 125, Processing Time 0.024 seconds

Evaluation of Antibacterial Activities of Chitosan Treated Fiber Waddings (키토산 가공 솜의 향균성능의 평가)

  • Yoo, Hye-Ja;Lee, Hye-Ja
    • Fashion & Textile Research Journal
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2001
  • The effect of chitosan on antibacterial activities of cotton, wool and polyester fibers was investigated by shake flask method. Chitosan was treated in 0.1%, 1% and 2% $NaBO_3$ solution to reduce the molecular weight in 4 steps, wadding of cotton, wool and polyester were treated in 0.1%, 0.3% and 0.5% of chitosan solution which were dissolved in 2% acetic acid aqueous solution. The antibacterial activities of the fiber wadding treated and untreated by chitosan against Escherichia coli, Proteus vulgaris and Stephylococcus aureus were measured by shake flask method. On the untreated waddings, cotton showed better antibacterial activities than wool, but on the treated ones, wool showed better than cotton. The antibacterial activity of polyester was better than that of cotton or wool which preserved before and after the chitosan treatment against the three kinds of bacteria. When the chitosan treated cotton waddings was retreated in NaOH aqueous solution, their bacterial activities decreased. After laundering, the antibacterial activities of the treated cotton and wool waddings kept good, but that of the treated polyester reduced by almost half.

  • PDF

Effect of Oenothera odorata jacquin Dye and Mordants on Chitosan Fiber (키토산 부직포의 달맞이꽃을 이용한 염색성 및 매염효과)

  • Seo, Hye-Young;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.1
    • /
    • pp.115-124
    • /
    • 2011
  • This study provides an eco-friendly dyeing processing for chitosan fiber using Oenothera odorata jacquin as a dye. The effects of chemical mordants (Al, Cu, Fe) and natural mordant (Chestnut shell) on the color change for dyed chitosan fibers were measured by K/S values, L, $a^*$, $b^*$, H, V, C values, color fastness, and antimicrobial activity. The results are as follows. Dyeing conditions of Oenothera odorata jacquin on chitosan fibers were optimized to $70^{\circ}C$, 30 minutes and 200% on weight of fabric (o.w.f.). The pre-mordant concentration of aluminium (Al), copper (Cu) and iron (Fe) of chitosan fibers was optimized to 3% (o.w.f.) and 1% (o.w.f.), respectively. The post-mordant concentration of chemicals, such as Al, Cu and Fe, on chitosan was determined to 1% (o.w.f.). The hue of chitosan fibers by chemical mordants was measured to be reddish & yellow. The pre-mordant concentration of Chestnut shell of chitosan was optimized to 70% (o.w.f.). The post-mordant concentration of Chestnut shell on chitosan was determined to be 50% (o.w.f.). The hue of chitosan fibers by Chestnut shell mordant was measured to be reddish & yellow. The wet cleaning fastness of chitosan fibers was improved by a pre-mordant that used chemical mordants. In the case of the Chestnut shell mordant, the wet cleaning fastness was improved by a post-mordant. The dry cleaning fastness of chitosan fibers was excellent regardless of mordants and mordant methods. The antimicrobial activity of the chitosan fiber was shown at 99.9% and its excellent qualities remained after the dyeing and mordant processing.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Regioselective Acylation on Glycol Chitosan (글라이콜 키토산의 위치선택적 아실화)

  • Lee, Wonbum;Park, Chong-Rae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.297-298
    • /
    • 2003
  • Chitin is a natural biopolymer that, with its derivative chitosan, has been represented as a biomaterial with considerable potential in wide ranging medical applications. But there are some limitations in using chitosan as attained, for instance, the problem of water solubility$^1$. In order to use chitosan in various applications (e.g. drug carrier), chemical modifications are often necessary$^2$. (omitted)

  • PDF

Mechanical Properties of Cellulose/Chitosan and Sericin/Chitosan Blend Films

  • Kiyohisa Takahashi;Kenji Nagata;Yoon, Heung-Soo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.9-10
    • /
    • 2003
  • Cellulose/chitosan and sericin/chitosan blend films with various mixing ratios were prepared and tensile properties, solubilities to the aqueous solution of acetic acid and the degree of swelling by the distilled water were measured. The interaction between the components of blend film and the blending effect were investigated.

  • PDF

Effect of Chitosan Pretreatment on the Dyeing of Cotton and Silk Fabrics using Caesalpinia sappan - Effect of the Change in Chitosan Molecular Weight - (키토산 사전 처리가 면과 견직물의 소목 염색에 미치는 영향 - 키토산의 분자량 변화에 따른 효과 -)

  • Choi In-Ryu;Kim Jong-Jun;Jeon Dong-Won
    • The Research Journal of the Costume Culture
    • /
    • v.13 no.4 s.57
    • /
    • pp.576-588
    • /
    • 2005
  • The effect of chitosan pretreatment on the dyeing of cotton fiber and silk fiber was investigated. However, it has been difficult to evaluate the effect of the chitosan precisely, since the characterization of the molecular weight and effect of the degree of deacetylation were not elucidated for the application. The treatment effect may change diversely since the chitosan solution viscosity differs a lot based on the chitosan molecular weight. In this study, three chitosan specimens, varying in molecular weight, were applied for the fabric pretreatment in order to investigate the effect of chitosan molecular weight. Also, in order to maximize the efficacy of the chitosan, highly deacetylated chitosan specimens, meeting the deacetylation degree of $100\%$, were selected far the application. The air-permeability change according to the chitosan molecular weight change, influence on the mordanting, color change, and wash fastness change were investigated.

  • PDF

Dyeing Characteristics and UV Protection Property of Green Tea Dyed Cotton Fabrics - Focusing on the Effect of Chitosan Mordanting Condition-

  • Kim Sin-Hee
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.255-261
    • /
    • 2006
  • There is increasing interest in the many beneficial aspects of green tea to human such as anti-carcinogenic, anti-aggregant, anti-allergic, anti-bacterial, anti-mutagenic, and anti-oxidant activities. Besides these beneficial aspects, it has been reported that green tea ingredients, especially polyphenolic families (i.e., catechin), have some UV protection property both in vivo and in topical applications. In this study, green tea extract was used as a dyeing stock for cotton and the UV protection property of the dyed cotton fabric was examined. To increase the affinity of cotton fiber to the polyphenolic components in the green tea extract, a natural biopolymer, chitosan, was used as mordanting agent. The effects of chitosan concentration in mordanting on the dyeing characteristics and the UV protection property were examined. Chitosan mordanted green tea dyed cotton showed better dyeing characteristic and higher UV protection property compared with the unmordanted green tea dyed cotton. As the chitosan concentration in mordanting increased, the dyeing efficiency and the UV protection property also increased. Therefore, adapting chitosan mordanting in green tea dyeing can increase the UV protection property of cotton fabrics to some extent.

A Study on the Interfacial Properties of Bioabsorbable Fibers/PoIy-L-Lactide Composites using Micromechanical Tests and Surface Wettability Measurement (Micromechanical 시험법과 표면 젖음성 측정을 이용한 생흡수성 섬유 강화 Poly-L-Lactide 복합재료의 계면물성 연구)

  • Park, Joung-Man;Kim, Dae-Sik;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.17-29
    • /
    • 2002
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites for implant materials were investigated using micromechanical technique and measurement of surface wettability. As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas those of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. Work of adhesion, $W_a$ between bioactive glass fiber and PLLA was the highest, and the wettability results were consistent with the IFSS. Interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

A Study on the Dyeing Characteristics in Cochineal Dyeing of Chitosan-treated Fabrics according to the Sequence of Mordanting Procedure (코치닐 염색시(染色時) Chitosan 처리포(處理布)의 매염순서(媒染順序)에 따른 차이(差異)에 관(關)하여)

  • Jeon, Dong-Won;Kim, Jong-Jun;Kwon, Hye-Jin
    • Journal of Fashion Business
    • /
    • v.7 no.5
    • /
    • pp.83-100
    • /
    • 2003
  • It has been known that the chitosan pre-treated fabrics can be dyed without the aid of mordanting process. It is due to the fact that chitosan treatment increases the dye uptake. However, the effect of chitosan on the dyeing mechanism has not been elucidated thus far. Following explanations have been presented regrading the action of the chitosan on the dyeing mechanisms: 1. Chitosan absorbs dyestuffs and facilitates dyeing since the chitosan itself has a good affinity toward dyestuffs. 2. Chitosan acts as a metallic mordant between the fiber molecule and dyestuff. 3. Fiber molecules and chitosan form a coordinate covalent bond. This study aims the quantitative investigation on the effect of the chitosan and the effect of sequence of the mordanting, pre-mordanting or post-mordanting, on the dyeing of the fabrics. Cotton fabrics and acylic fabrics were pre-treated with chitosan before dyeing with cochineal dyestuffs. Method 1: Fabrics were, firstly, mordanted with Al, Sn, Cu, and Fe; mordanted fabrics were, secondly, treated with chitosan; mordanted and chitosan-treated fabrics were, thirdly, dyed. Method 2: Fabrics were, firstly, treated with chitosan; chitosan-treated fabrics were, secondly, mordanted with Al, Sn, Cu, and Fe; these were dyed then. Method 2 gave distinguished specific color development with darker shade. Apart from this, chitosan-treated fabrics yielded darker shade compared to the pre-mordanted fabrics without chitosan-treatment.

The Effect of Chitosan-Pretreatment on the Cochineal Dyeing of Cotton, Silk, Nylon, and Polyester Fabrics (키토산 전처리(前處理)가 면(綿), 견(絹), 나일론, 폴리에스테르의 코치닐염색(染色)에 미치는 효과(效果))

  • Jeon, Dong-Won;Kim, Jong-Jun;Kim, Sun-Hwa
    • Journal of Fashion Business
    • /
    • v.7 no.4
    • /
    • pp.57-66
    • /
    • 2003
  • Cochineal dyeing was applied to natural fiber fabrics, cotton and silk fabrics, and synthetic fiber fabrics, nylon and polyester fabrics. Chitosan-pretreatment was applied to the fabrics in order to investigate the effect of chitosan treatment on the dyeing behavior. The effect of chitosan treatment on the mordanting was also investigated by incorporating Cu-mordant on the chitosan-treated or chitosan-untreated fabrics during the dyeing process.