• Title/Summary/Keyword: chitosan

Search Result 1,621, Processing Time 0.029 seconds

Glucosamine Hydrochloride and N-Acetylglucosamine Influence the Response of Bovine Chondrocytes to TGF-β3 and IGF in Monolayer and Three-Dimensional Tissue Culture

  • Pizzolatti, Andre Luiz A.;Gaudig, Florian;Seitz, Daniel;Roesler, Carlos R.M.;Salmoria, Gean Vitor
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.781-791
    • /
    • 2018
  • BACKGROUND: Glucosamine hydrochloride (GlcN HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. METHOD: Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) $TGF-{\beta}$ ($5ng\;mL^{-1}$) and IGF-I ($10ng\;mL^{-1}$), GlcN HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. RESULTS: The two glucosamines showed opposite effects in monolayer culture: GlcN HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. CONCLUSION: GlcN HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.

Nanofiber Membrane based Colorimetric Sensor for Mercury (II) Detection: A Review (나노 섬유 멤브레인을 기반으로 한 수은(II) 색변화 검출 센서에 대한 총설)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.241-252
    • /
    • 2021
  • Rapid industrialization with growing population leads to environmental water pollution. Demand in generation of clean water from waste water is ever increasing by scarcity of rain water due to change in weather pattern. Colorimetric detection of heavy metal present in clean water is very simple and effective technique. In this review membrane based colorimetric detection of mercury (II) ions are discussed in details. Membrane such as cellulose, polycaprolactone, chitosan, polysulfone etc., are used as support for metal ion detection. Nanofiber based materials have wide range of applications in energy, environment and biomedical research. Membranes made up of nanofiber consist up plenty of functional groups available in the polymer along with large surface area and high porosity. As a result, it is easy for surface modification and grafting of ligand on the fiber surface enhanced nanoparticles attachment.

Assessment of the potential of algae phycobiliprotein nanoliposome for extending the shelf life of common carp burgers during refrigerated storage

  • Haghdoost, Amir;Golestan, Leila;Hasani, Maryam;Noghabi, Mostafa Shahidi;Shahidi, Seyed Ahmad
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.276-286
    • /
    • 2022
  • This study is focused on the effect of phycobiliprotein extraction of Gracilaria on the quality of common carp burgers, and the application of nanoliposomes containing pigment in the improvement of its antimicrobial and antioxidant activity of burgers during refrigerated storage in 18 days. Burgers were incorporated with phycobiliprotein and liposomal phycobiliprotein (2.5% and 5% w/w), and their chemical and microbial changes in terms of pH, peroxide value (PV), thiobarbituric acid (TBA), total volatile basic nitrogen (TVB-N), total viable counts (TVC), psychrotrophic bacterial counts (PTC), and sensory characteristics were evaluated. Results presented a nanoliposome size of about 515.5 nm with capable encapsulation efficiency (83.98%). Our results showed non-encapsulated phycobiliprotein could delay the deterioration of common carp burgers, as a reduction in PV, TBA, and TVB-N, TVC, and PTC values in burgers treated with free and nano encapsulated phycobiliprotein. Moreover, the potential of phycobiliprotein was improved when it was encapsulated into chitosan coated liposomes. Burgers treated with 5% nanoliposomes displayed the lowest amount of lipid oxidation and microbial deterioration in comparison to others during storage. According to chemical, microbial and sensory evaluation, the shelf life of common carp burgers was increased in samples treated with encapsulated phycobiliprotein at 2.5% and 5%, as compared to the control (p ≤ 0.05).

Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model

  • Takanche, Jyoti Shrestha;Kim, Ji-Eun;Jang, Sungil;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • Purpose: The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. Methods: An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. Results: MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. Conclusions: This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.

Antibacterial activity of florfenicol composite nanogels against Staphylococcus aureus small colony variants

  • Liu, Jinhuan;Ju, Mujie;Wu, Yifei;Leng, Nannan;Algharib, Samah Attia;Luo, Wanhe
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.78.1-78.13
    • /
    • 2022
  • Background: Florfenicol might be ineffective for treating Staphylococcus aureus small colony variants (SCVs) mastitis. Objectives: In this study, florfenicol-loaded chitosan (CS)-sodium tripolyphosphate (TPP) composite nanogels were prepared to allow targeted delivery to SCV infected sites. Methods: The formulation screening, the characteristics, in vitro release, antibacterial activity, therapeutic efficacy, and biosafety of the florfenicol composite nanogels were studied. Results: The optimized formulation was obtained when the CS and TPP were 10 and 5 mg/mL, respectively. The encapsulation efficiency, loading capacity, size, polydispersity index, and zeta potential of the optimized florfenicol composite nanogels were 87.3% ± 2.7%, 5.8% ± 1.4%, 280.3 ± 1.5 nm, 0.15 ± 0.03, and 36.3 ± 1.4 mv, respectively. Optical and scanning electron microscopy showed that spherical particles with a relatively uniform distribution and drugs might be incorporated in cross-linked polymeric networks. The in vitro release study showed that the florfenicol composite nanogels exhibited a biphasic pattern with the sustained release of 72.2% ± 1.8% at 48 h in pH 5.5 phosphate-buffered saline. The minimal inhibitory concentrations of commercial florfenicol solution and florfenicol composite nanogels against SCVs were 1 and 0.25 ㎍/mL, respectively. The time-killing curves and live-dead bacterial staining showed that the florfenicol composite nanogels were concentration-dependent. Furthermore, the florfenicol composite nanogels displayed good therapeutic efficacy against SCVs mastitis. Biological safety studies showed that the florfenicol composite nanogels might be a biocompatible preparation because of their non-toxic effects on the renal tissue and liver. Conclusions: Florfenicol composite nanogels might improve the treatment of SCV infections.

Nitric oxide-Releasing Chitosan Nanoparticles; A Potential Impeding Strategy Against Salinity Stress in Arabidopsis thaliana

  • Waqas Rahim;Anjali Pande;Nusrat Jahan Methela;Da-Sol Lee;Bong-Gyu Mun;Hak-Yoon Kim;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.157-157
    • /
    • 2022
  • Plants being sessile are prone to various abiotic challenges, including salinity. Plants generally cope with salt stress by regulating their endogenous NO levels. NO exogenously applied in various forms also successfully impedes the salt stress, but its small size, short half life, and high volatility rate hamper its application in agriculture. NO application via CS as a nanocarrier is an alternate option to ensure the optimal kinetic release of NO for a long period compared to the free NO form. Herein, we synthesized and characterized GSNO-CS NP by ionic gelation of TPP with CS and then reacting with GSH, followed by reaction with NaNO2 suspension. The synthesized NPs were characterized using non-destructive analytical techniques such as DLS, FTIR, and SEM to ensure their synthesis and surface morphology. NO-release profile confirmed optimal kinetic NO release for 24 h from NO-CS NP as compared to free NO form. The efficiency of NO-CS NP was checked on Arabidopsis plants under salinity stress by gauging the morphological, physiological, and enzymatic antioxidant system and SOS pathway gene expression levels. Overall, the results revealed that NO-CS NP successfully mitigates salinity stress compared to free GSNO. Concluding, the findings provide sufficient experimental evidence for the application of nanotechnology to enhance NO delivery, thus inducing more benefits for the plants under stress conditions by mitigating the deleterious impacts of salt stress on the morphological and physiological status of the plants, and regulating the ions exchange by overexpression of SOS pathway candidate genes.

  • PDF

Efficacy of Synthesized NO-releasing Nanoparticles on the Germination and Growth of Arabidopsis thaliana

  • Nusrat Jahan Methela;Anjali Pande;Waqas Rahim;Da-Sol Lee;Bong-Gyu Mun;Geun-Mo Lee;Cho Jun-ho;Tiba Nazar Ibrahim Al Azzawi;Hak-Yoon Kim;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.159-159
    • /
    • 2022
  • Nitric oxide (NO) is a versatile signaling molecule, which is not only involved in plant growth and development but also regulates biological processes in response to biotic and abiotic stresses. Exogenous application of NO regulates the endogenous level of nitric oxide in response to stress conditions and therefore, NO donors are frequently used for stress alleviation. However, NO has very short half-life along with high reactivity. Therefore, conventional NO donors are often disadvantageous due to the relative instability of NO. On the contrary, development of NO releasing nanoparticles is a potential technique for enhancing the availability of NO in plants. Therefore, our aim was to synthesize such potential NO releasing nanoparticles which may be useful for application in agriculture. We have prepared Chitosan encapsulated S-nitrosoglutathione nanoparticles (GSNONP) and tried it with different concentrations for basic research in Arabidopsis thaliana. Our results suggest that lower concentration of this nanoparticle is highly effective for better growth of plants whereas higher concentration produces toxicity that leads to plant death. We observed better growth of Arabidopsis thaliana at 1µM concentration of the GSNONP compared to free GSNO.

  • PDF

Transforming growth factor $(TGF)-{\beta}1$ conjugated chitosan film for enhanced osteoblastic activity (변형성장인자가 고정된 키토산 필름의 골아세포 활성에 미치는 영향)

  • Park, Yoon-Jeong;Lee, Jue-Yeon;Kim, Kyung-Hwa;Kim, Tae-Il;Lee, Myung-Hee;Shin, Seung-Yoon;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young;Han, Soo-Boo;Min, Byung-Moo;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.781-790
    • /
    • 2004
  • 골아세포의 생물학적 기능을 증진시키기 위해 키토산의 표면개질에 대하여 연구하였다. 생체적합성 천연고분자인 키토산은 1차 아미노기를 소유하고 있으므로 적정한 공유결합제를 사용하여 세포성장인자와 같은 생리활성을 지닌 단백질을 키토산의 표면에 고정시킬 수 있다. 본 연구에서는 키토산을 필름형태로 제조하여 세포성장인자 중 형질전환성장인자를 고정하고 골아세포의 부착, 성장 및 분화를 증가시키고자 하였다. 형태전환성장인자의 고정화 효율은 단순한 흡착방법에 비해 높았으며, 표면에 형성된 공유결합은 매우 안정하였다. 골아세포를 배양하여 초기세포부착능에 대한 영향을 연구한 결과, 배양 후 4시간, 1일째, 형질전환성장인자를 고정한 키토산 표면에서 고정하지 않은 키토산의 표면에 비해 더 많은 수의 골아세포가 부착되었고, 더 많이 신장된 부착형태를 보였다. 세포활성정도와 배양 후 4주일째의 칼슘축적량을 측정한 결과, 형질전환성장인자를 고정한 키토산 표면에서 고정하지 않은 키토산의 표면에 비해 더 높았다. 위의 결과는 키토산 표면에 형태전환성장인자의 고정이 성공적으로 이루어졌으며, 또한 실제로 활성이 있는 것이 증명되었다. 위의 연구 결과에서 형질전환성장인자로 고정된 키토산은 골아세포의 초기 부착 및 분화를 촉진시켰음을 알 수 있었던 바 성장인자의 표면고정은 임플란트 및 조직공학용 지지체에도 적용하여 생체적합성과 세포기능을 증진시키는데 이용할 수 있음을 알 수 있었다.

Fermented Extracts of Korean Mistletoe with Lactobacillus (FKM-110) Stimulate Macrophage and Inhibit Tumor Metastasis (유산균으로 발효된 한국산 겨우살이 추출물의 Macrophage 자극에 의한 면역학적 활성화와 종양전이 억제효과)

  • Yoon, Taek-Joon;Yoo, Yung-Choon;Kang, Tae-Bong;Lee, Kwan-Hee;Kwak, Jin-Hwan;Baek, Young-Jin;Huh, Chul-Sung;Kim, Jong-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.838-847
    • /
    • 1999
  • Based on the results that the extract of Korean mistletoe (KM-110) has immunological and anti-tumor activities and its main component is lectin called KML-U, this study was carried out to investigate the immunostimulatory and anti-tumor activities of FKM-110, fermented KM-110 with lactobacillus, as a basic study for the development of functional food with anti-tumor activity. The amount of lectin after fermentation determined by ELISA was varied with the fermentation time and kinds of lactobacillus. Cytotoxic effects of FKM-110 on the various tumor cells was significant and dependent on the concentration of KML-U and the kinds of lactobacillus. FKM-110 stimulated macrophage and resulted in the secretion of some cytokines such as IL-1 and $IFN-{\gamma}$, but this effect was not correlated with the concentration of lectin. FKM-110 fermented with Marshall Lactobacillus casei showed the most potent antitumor activity in experimental and spontaneous metastasis models. When yoghurt produced with KM-110, Marshall Lactobacillus casei and skim milk was administered orally to mouse, the metastasis of tumor cells was significantly inhibited.

  • PDF

Development of $^{99m}Tc$-Transferrin as an Imaging Agent of Infectious Foci (감염병소 영상을 위한 $^{99m}Tc$-Transferrin 개발)

  • Kim, Seong-Min;Song, Ho-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2006
  • Purpose: Purpose of this study is to synthesize $^{99m}Tc$-labeled transferrin for injection imaging and to compare it with $^{67}Ga$-titrate for the detection of infectious foci. Materials and methods: Succinimidyl 6-hydrazino-nicotinate hydrochloride-chitosan-transferrin (Transferrin) was synthesized and radiolabeled with $^{99m}Tc$. Labeling efficiencies of $^{99m}Tc$-Transferrin were determined at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr. Biodistribution and imaging studies with $^{99m}Tc$-Transferrin and $^{67}Ga$-citrate were performed in a rat abscess model induced with approximately $2{\times}10^8$ colony forming unit of Staphylococcus aureus ATCC 25923. Results: Successful synthesis of Transferrin was confirmed by mass spectrometry. Labeling efficiency of $^{99m}Tc$-Transferrin was $96.2{\pm}0.7%,\;96.4{\pm}0.5%,\;96.6{\pm}1.0%,\;96.9{\pm}0.5%,\;97.0{\pm}0.7%\;and\;95.5{\pm}0.7%$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr, respectively. The injected dose per tissue gram of $^{99m}Tc$-Transferrin was $0.18{\pm}0.01\;and\;0.18{\pm}0.01$ in the lesion and $0.05{\pm}0.01\;and\;0.04{\pm}0.01$ in the normal muscle, and lesion-to-normal muscle uptake ratio was $3.7{\pm}0.6\;and\;4.7{\pm}0.4$ at 30 min and 3 hr, respectively. On image, lesion-to-background ratio of $^{99m}Tc$-Transferrin was $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45\;and\;5.59{\pm}0.40$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 10 hr and those of $^{67}Ga$-citrate was $3.06{\pm}0.84,\;4.12{\pm}0.54\;and\;4.55{\pm}0.74 $ at 2 hr, 24 hr and 48 hr, respectively. Conclusion: Transferrin is successfully labeled with $^{99m}Tc$, and its labeling efficiency was higher than 95% and stable for 8 hours. $^{99m}Tc$-Transferrin scintigraphy showed higher image quality in shorter time compared to $^{67}Ga$-citrate image. $^{99m}Tc$-transferrin is supposed to be useful in the detection of the infectious foci.