• Title/Summary/Keyword: chirp seismic profiles

Search Result 12, Processing Time 0.031 seconds

Hydrocarbon generation and indicator in the western Ulleung Basin (울릉분지 서부에서의 탄화수소 생성 및 지표)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Young-Joo;Riedel, M.;Hyndman, R.D.;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.507-510
    • /
    • 2007
  • Piston cores retrieved from the western Ulleung Basin, East Sea were analyzed to examine the potential for hydrocarbon generation and to determine the hydrocarbon indicators. 2D multi-channel reflection seismic and Chirp data were also investigated for mapping and characterizing the geophysical hydrocarbon indicators such as BSR (bottom simulating reflector), blank zone, pock-mark etc. High organic carbon contents and sedimentation rates that suggest good condition for hydrocarbon generation. High pressure and low temperature condition, and high residual hydrocarbon concentrations are favor the formation of natural gas hydrate. In the piston cores, cracks generally oriented to bedding may indicate the gas expansion. The seismic data show several BSRs that are associated with natural gas hydrates and underlying free gas. A number of vertical to sub-vertical blank zones were well identified in the seismic sections. They often show the seismic pull-up structures, probably indicating the presence of high velocity hydrates. Numerous pockmarks were also observed in the Chirp profiles. They may indicate the presence of free gas below the hydrate stability zone as well.

  • PDF

Hydrocarbons in shallow sediments of the western Ulleung Basin (서부 울릉분지 천부 퇴적층의 탄화수소)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Young-Joo;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.597-599
    • /
    • 2007
  • Studies on the hydrocarbons in shallow sediments of the East Sea of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. 4946 L-km of 2D multichannel reflection seismic data, 3250 L-km of high-resolution Chirp profiles and 16 selected piston cores were analyzed to determine the presence of hydrocarbons in shallow sediments of the western deep-water Ulleung Basin. The seismic data show a number of blanking zones that probably reflect widespread fluid and gas venting. The blanking zones are often associated with velocity pull-up structures. These upwelling structures are interpreted to be the result of high-velocity natural gas hydrate. There are also several bottom-simulating reflectors that are associated with free gas and probably overlying gas hydrate. Numerous pockmarks were also observed in the Chirp profiles. They are seafloor depressions caused by the removal of near-seafloor soft sediments by escaping of fluid and gas. In piston cores, cracks generally oriented parallel to bedding suggest significant gas content some of which may have been contained in gas hydrate in situ.

  • PDF

Development of Sedimentary Sequence in the Masan Bay, South Sea of Korea (마산만 퇴적층서 발달 특성)

  • Choi, Dong-Lim;Lee, Tae-Hee
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.411-418
    • /
    • 2007
  • We studied the bottom morphology and sedimentary environments of the Masan Bay using high-resolution Chirp seismic profiles and sediments data. According to deep-drilled core samples (up to 20 m thick) penetrated into the weathered rock basement, the sediments consist largely of three sediment types: the lower sandy gravel facies (Unit I) of 1-4 m in thickness, the middle sandy mud and/or muddy sand facies(Unit II) of 1-2 m thick and the upper mudfacies (Unit III) of over 10 m in thickness. The sedimentary column above the acoustic basement can be divided into two major sequences by a relatively strong mid-reflector, which show the lower sedimentary sequenc e(T) with parallel to subparallel internal reflectors and the upper sedimentary sequence(H) with free acoustic patterns. Acoustic basement, the lower sedimentary sequence (T), and the upper sequence (H) are well correlated with poorly sorted massive sandy gravels (Unit I), the sand/mud-mixed sediment (Unit II), and the muddy facies(Unit III), respectively. The acoustic facies and sediment data suggest that the Masan bay is one of the most typical semi-enclosed coastal embayments developed during the Holocene sea-level changes. The area of the Masan Bay reduced from about $19\;km^2$ in 1964 to about $13\;km^2$ in 2005 by reclamation, and its bottom morphology changed as a result of dredging of about $2{\times}10^7\;m^3$.

Study of Sedimentary Deposits using High Resolution Seismic data in Suyeong Bay, Busan (고해상도 탄성파 자료를 이용한 부산 수영만의 퇴적층서 연구)

  • Seo, Young-Kyo;Lee, Gwang-Soo;Kim, Dae-Choul;Lee, Hi-Il
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.81-92
    • /
    • 2011
  • High resolution seismic profiles (chirp and sparker system) were analyzed for the interpretation of nearshore sedimentary environments of Suyeong Bay, Busan. The sedimentary sequence is classified into three seismic units (SU1a, SU1b, and SU2), overlying acoustic basement, and each units can be defined as erosional and disconformable strata. The lowermost SU1a is characterized by the acoustically parallel and prolonged inner reflections, compared with the upper SU1b displays irregular internal reflectors. The uppermost unit, SU2, is acoustically transparent. The acoustic basement is incised with channels, probably due to the active erosion during the early period of transgression. The acoustic basement deepens eastward in the study area, suggesting primary association with the Suyeong River. The upper SU1a and SU1b units constitute lowland-fill strata. SU2 is widely distributed over the study area. High resolution seismic profiles of Suyeong Bay provide significant information crucial to the interpretation of sedimentary environmental history, which is closely related to the sea level change, estuarine environment and influx of terrestrial sediments from the adjacent rivers.

Survey of Sedimentary Environment and Sediment at the West-Northern Site of Chagwi-do nearby Jeju Island (제주도 차귀도 서북쪽 해역 내 퇴적 환경 및 퇴적물 조사)

  • Kim, Hansoo;Hyeon, Jong-Wu;Jin, Changzhu;Kim, Jeongrok;Cho, Il-Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • The sedimentary environment and sediment were surveyed at the West-Northern site of Chagwi-do nearby Jeju Island for the design of the embedded suction anchor system of 10 MW-class floating wave-offshore wind hybrid power generation system. According to the classification scheme of Chough et al.[2002], the echo type of the seismic profiles using the chirp III was classified. As a results, the center and west-northern area of survey site were proved to be type I-3 where subbottom layer with thickness 5~15 m exists under the flat seafloor. On the other hands, the east-southern area were regarded to be type I-1, I-2 and III-1 where seafloor reflection is much stronger than type I-3. Also, the physical tests (unit weight, moisture content, grain size, liquid limit, specific gravity) were performed with samples taken from 8 fixed locations. It is found that the sand (SP), the sand blended with silt (SM) and the mixture of SP-SM are distributed uniformly on the survey area.

Sedimentary Environment and Sequence Study using High Resolution Seismic Survey in Gyunggi Bay, the Yellow Sea (서해 경기만에서의 고해상도 탄성파 탐사를 이용한 퇴적환경 및 퇴적층서 연구)

  • Lee, Gwang-Soo;Kim, Dae-Choul;Seo, Young-Kyo;Yi, Hi-Il;Yoo, Shin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.683-694
    • /
    • 2009
  • High-resolution (Chirp and Sparker system) seismic profiles were analyzed to investigate the sedimentary sequence and distribution pattern of the late Holocene deposits in Gyunggi Bay, the Yellow Sea. The bay is located in the western part of Korea, east of the Yellow Sea. The sedimentary sequence divided into three units bounded by erosional bounding surface: (1) acoustically parallel to subparallel reflectors with cross bedding structures (Unit 1); (2) confused inner reflectors and top of unit exposed partially at the seafloor (Unit 2); and (3) approximately parallel reflections and regressive to transgressive incision-fills (Unit 3). On the basis of seafloor morphology, surface bedforms, and subbotom acoustic characters, echo types in the study area were identified following the schemes of Chough et al. (2002); (1) flat seafloor with sharp bottom echoes (echo types 1-1, 1-2 and 1-3; transgressive sediment sheets or relict sands), (2) mounded seafloor with either smooth surface or superposed bedforms (echo types 2-1 and 2-2; tidal ridges), and (3) various-scale eroded seafloor (echo types 3-1 and 3-2; channels). Suspect features of acoustic turbid zones which is related to gas charged sediment are reported.

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

Geoacoustic Model of Coastal Bottom Strata off the Northwestern Taean Peninsula in the Yellow Sea

  • Ryang, Woo-Hun;Kwon, Hyuckjong;Choi, Jee-Woong;Kim, Kyong-O;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.428-435
    • /
    • 2019
  • In the shallow coastal area, located off the northwestern Taean Peninsula of the eastern Yellow Sea, geoacoustic models with two layers were reconstructed for underwater acoustic experimentation and modeling. The Yellow Sea experienced glacio-eustasy sea-level fluctuations during Quaternary period. Coastal sedimentation in the Yellow Sea was characterized by alternating terrestrial and shallow marine deposits that reflected the fluctuating sea levels. The coastal geoacoustic models were based on data from piston, grab cores and the high-resolution 3.5 kHz, chirp seismic profiles (about 70 line-kilometers, respectively). Geoacoustic data of the cores were extrapolated down to 3 m in depth for geoacoustic models. The geoacoustic property of seafloor sediments is considered a key parameter for modeling underwater acoustic environments. For simulating actual underwater environments, the P-wave speed of the models was adjusted to in-situ depth below the sea floor using the Hamilton method. The proposed geoacoustic models could be used for submarine acoustic inversion and modeling in shallow-water environments of the study area.

Quaternary Depositional Environments in the Central Yellow Sea Interpreted from Chirp Seismic Data (고해상 탄성파 자료를 이용한 황해 중부 해역에서의 제4기 퇴적환경)

  • 허식;천종화;한상준;신동혁;이희일;김성렬;최동림;이용국;정백훈;석봉출
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.191-200
    • /
    • 1999
  • Analysis of chirp high-resolution seismic profiles from the central Yellow Sea reveals that depositional environments in this area can be divided into three distinctive zones from west to east: (1) subaqueous delta system near the Shandong Peninsula, (2) erosional zone in the central Yellow Sea, and (3) tidal sand ridges and sand waves near the Korean Peninsula. The Shandong subaqueous delta, extending southward from the Shandong Peninsula, changes gradually into prodelta southeastward. The sediments originated from the Yellow River are transported southward along the Chinese coastal area. The erosional zone in the central Yellow Sea contains numerous paleochannels and shows linear erosional features trending northwest-southeast. The erosional zone would be dominated by non-depositional or erosional processes during the Holocene. Tidal sand ridges and sand waves are well developed along the western coast of Korea. The residual sands, which were originally fluvial sediments at the sea-level lowstand, are interpreted as the result of winnowing process during the sea-level rise. Modern sand ridges generally migrates in a northeast-southwestern direction, which coincide with dominant tidal current direction.

  • PDF

Study on the Characteristics of Gas Hydrate Layers Distributed in the Southern Ulleung Basin, the East Sea (동해 울릉분지 남부해역에 분포하는 가스 하이드레이트층의 특성 연구)

  • Huh Sik;Yoo Hai-Soo;Kim Han-Joon;Han Sang-Joon;Lee Yong-Kuk
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.18-22
    • /
    • 2004
  • To identify and interpret the distribution and the characteristics of the gas hydrate layers in the Ulleung Basin, we have surveyed and gathered the multi-channel seismic data, Chirp sub-bottom profiler, SeaBeam and 12 m piston core samples since 1996. In previous works, high-resolution seismic profiles showed acoustic anomalies such as acoustic void, acoustic turbidity and pock mark which indicate the presence of gas-charged sediments. The patterns of horizontal degassing cracks originated from free methane expansion is the strong indicator of shallow gas-charged sediments in the core samples. The observation of submarine slides and slumps from destabilizing the sediments in the southern part of the Ulleung Basin may also point out that the gas had been released from gas hydrate dissociation during lowstand of sea level. The multi-channel seismic data show BSR, blanking and phase reversal. The gas hydrate layers above which large-scale shallow gases are distributed exist at the depth of about 200 m from the sea-floor with water depth of 2,100 m. From the interpretation of seismic sections in the southern Ulleung Basin, gas hydrate layers occur in the Pleistocene-Holocene sediments. These gas-charged sediments, acoustic anomalies and BSR may be all related to the existence of gas hydrate layers in the study area.

  • PDF