• Title/Summary/Keyword: chiral alcohols

Search Result 35, Processing Time 0.022 seconds

Chiral Molecular Recognition by Alkoxy-amine-aluminum Derivatives (Alkoxy-amine-aluminum 유도체에 의한 키랄 분자 인식)

  • Kim, Jong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.143-147
    • /
    • 2009
  • The enantioselective reduction of representative prochiral alkyl-aryl ketones with a new chiral alkoxy-amine-aluminum derivatives from aluminum hydride and ${\alpha},{\alpha}$-diphenyl-${\beta}$-amino alcohols, such as (S)-(-)-2-amino-3-methyl-1,1-diphenylbutan-1-ol(AMDPB) and (S)-(-)-2-(diphenylhydroxy-methyl)pyrrolidine(DPHMP), in THF at $0^{\circ}C$ was studied. In the reduction of alkoxy-amine-aluminum derivatives, acetophenone, propiophenone, isopropiophenone, and butyrophenone are reduced to corresponding aromatic secoundary alcohols with 34~60 % enantiomeric excess of (S)-isomers. For such ketones, the optical induction was enhanced by increasing a size of alkyl groups.

  • PDF

Novel Asymmetric Synthesis of Unsaturated 1,2-Amino Alcohols

  • Kim, Ji-Duck;Jung, Young-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.231.2-232
    • /
    • 2002
  • The synthesis of chiral 1,2-amino alcohols has been an area of intense study in the synthetic and industrial fields, because of their important roles in organic synthesis as fundamental building blocks and their occurrence in a number of natural products. drugs. and chiral auxiliaries or ligands. General methods for the synthesis of these compounds can be divided into two large categories: functional group transformations and the C-C or the C-N bond formations. (omitted)

  • PDF

Chiral Separation of Derivatized Racemic Alcohols on Substitued Cyclodextrin Stationary Phases by Capillary Gas Chromatography (모세관 기체 크로마토그래피에 의한 치환된 Cyclodextrin 정지상을 이용한 알코올 유도체의 키랄분리)

  • Lee, Sun-Haing;Seo, Yeong-Ju;Lee, Kwang-Pill
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.2
    • /
    • pp.94-102
    • /
    • 1995
  • S-Hydroxypropyl(PH) ${\beta}$-cyclodextrin(hydrophilic), dialkyl(DA)-cyclodextrin(hydrophobic), trifluoroacetyl(TA) ${\gamma}$-cyclodextrin(intermediate) stationary phases were used for gas chromatographic separation of racemic alcohols and their derivatives. All the alcohols used for this experiment were derivatived by using trifluoro acetic anhydride, acetic anhydride, or trichloro acetic anhydride. It is apparent that the enantioselectivity of the enantiomeric pairs was very dependent on the type of acylation reagent. The best experimental condition of optical resolution of the alcohols and their derivatives was different on the polarity of the solute molecules. The chiral separation was also studied depending on temperature, polarity of the column, and hydrogen bonding ability and steric effect between the alchols and CD stationary phase. The chiral recognition mechanism is dependent not upon the kinds of the chiral stationay phases but upon the derivatization of the racemic alchols.

  • PDF

Enantioselective Phenolic Kinetic Resolution of Epoxides Catalyzed by New Chiral Salen Complexes (새로운 구조의 키랄 살렌 촉매상에서 페놀유도체에 의한 에폭사이드의 광학선택적 개환반응)

  • Rahul, B. Kawthekar;Lee, Kwang-Yeon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.630-635
    • /
    • 2007
  • New chiral Co-salen complexes with one $C_3-^tBu$ group in the structure have been synthesized and applied as a chiral catalyst. A dimeric chiral salen having aluminum group metal salts such as $AlCl_3$ displayed very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides to synthesize optically pure ${\alpha}$-aryloxy alcohols via phenolic kinetic resolution. The salen complexes immobilized on the inorganic support were also used as effective catalysts in that reaction. The identity of metal salts in the new chiral salen complex has proved to be important in the enantioselective reactions.

Diastereoselective Synthesis of Unsaturated 1,4-Amino Alcohols as a Biologically Important Moiety

  • Jung Young Hoon;Kim Ji Duck
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.382-390
    • /
    • 2005
  • chial allylic ethers with a hydroxyl group attached to the $\pi-system$ and chlorosulfonyl isocyanate. The enantioselectivity of the CSI reaction with the chiral allylic and benzylic ethers was examined in various solvents and temperatures. Based on these results, it was proposed that the CSI reaction is a competitive reaction of a $S_{N}i$ (retention) and a $S_{N}1$ mechanism (racemization) according to the stability of the carbocation intermediate. This means that there is a greater proportion of retention with the less stable the carbocation intermediate and vise versa.

New Chiral Borohydrides. 2. Preparation of Potassium B-Methoxydiisopinocampheylborohydride and Its Asymmetric Reducing Properties

  • Cho, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.662-665
    • /
    • 1991
  • In order to prepare new chiral borohydrides (4) possessing chirality on dialkyl moieties, a series of B-alkoxydiisopinocampheylborinates (3) were synthesized by treatment of diisopinocampheylborane ($Ipc_2BH$) with alcohols (R in ROH: Me, Et, i-Pr, t-Bu) and reacted with excess of potassium hydride. Of these chiral borinic esters, only B-methoxydiisopinocampheyl borinate (3a) was converted into the corresponding dialkylmonoalkoxyborohydride (4a). For the other borinic esters, hydride uptake reactions were very slow at room temperature, accompanying disproportionation products at $65^{\circ}C$. The hydride (4a) formed is stable at $0^{\circ}C$ and can be stored over potassium hydride for few months. In the asymmetric reduction of the selected ketones, 4a provided the corresponding alcohols, such as 21% ee for 3-methyl-2-butanone, 11% ee for 2,2-dimethylcyclopentanone, 24% ee for acetophenone, 32% ee for 3-acetylpyridine, 30% for methyl benzoylformate, 31% ee for 4-phenyl-3-butyn-2-one, 39% ee for 3-butyn-2-one, and 34% ee for 3-hexyn-2-one.

Synthesis of Chiral Intermediates Catalyzed by New Chiral Polymeric (Salen) Cobalt Complexes Bearing Lewis Acidic Metal Halides

  • Lee, Kwang-Yeon;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1553-1561
    • /
    • 2007
  • The new type of heterometallic chiral polymer salen complexes have been synthesized and it has been found that group 13 metal salts (AlCl3, GaCl3 and InCl3) combined to cobalt salen unit played the crucial role in the asymmetric kinetic resolution of racemic epoxides. Polymeric salen catalysts showed very high reactivity and enantioselectivity for the asymmetric ring opening of terminal epoxide with diverse nucleophiles. They provide the enantiopure useful chiral intermediates such as chiral terminal epoxides and α -aryloxy alcohols in one-step process. An efficient methodology for providing very high enantioselectivity can be achieved in the synthesis of valuable chiral building blocks via our catalytic system by combination of various asymmetric ring opening reactions.