• Title/Summary/Keyword: chip breaker angle

Search Result 5, Processing Time 0.019 seconds

A Study on the Chip Control in Machining STS304 Using a Chip Breaker (STS304잘삭시 Chip Breaker를 이용한 Chip제어에 관한 연구)

  • Yeom, D.W.;Yu, K.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 1994
  • One of the parameters that influence the productivity of every industry, involved in metal cutting, is the chip from ; continuous or broken chip. Chip form varies according to machining conditions, material used, tool geometry and chip breaker geometry. Therefore, in this study we carried out the experiment on the chip control in machining STS304 using an attached obstruction type chip breaker. Namely, with the change of a chip breaker distance, chip breaker angle, cutting characteristics in machining STS304 which is well-known as a machining difficult material and produces a saw-toothed chip. The results of the experiment are as follows : 1. The chip breaker distance and angle under which the preferred chip is produced, show 1.5mm and 60 .deg. , while chip breaker angle in machining an ordinary steel was well-known 45 .deg. . 2. During the cutting process, the change of feed than the change of velocity was applied as cutting conditions, effects more clearly on the chip breaking. 3. Considering a whole surface roughness, it is not advisable to apply chip breaker mentioned above for precision cutting.

  • PDF

Prediction of Cutting Forces for the Chip Breaker Insert in Milling (밀링용 칩 브레이커 인서트의 절삭력 예측)

  • 김국원;이우영;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2664-2675
    • /
    • 1993
  • In this paper, the effects of chip breaker configuration on cutting forces for various cutting conditions are investigated and a method for predicting cutting forces effectively for chip breaker insert in milling is described. Based on the shear plane model and the relevant equations already existing for the relation among the parameters, the method makes use of the analytic geometric approach considering the configuration of cutting too by a 3-dimensional coordinate transformation matrix. The groove type chip breaker insert is modeled to be a double rake insert, represented by the first radial rake angle, the second radial rake angle and the length of land, and the program analyzing the cutting forces is developed. The program capability is verified by comparing the results with the experimental ones for a single cutter; and in case of primary cutting forces, the results of simulation and experiments agree very well showing 2%~16.7% difference within the feed rate range investigated.

An Experimental Study on New Type Chip Brakeer(Part 1) (신形 칩折斷具에 관한 實驗的 硏究 (제1보))

  • 손명환;이호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1121-1140
    • /
    • 1992
  • In metal cutting the shape of generated chip varies according to cutting conditions, characteristics of workpiece and geometry of cutting tool. The best surface roughness of machined workpiece is obtained when generating flow type contrinuous chip. If the generated chip is not broken, that is not only tangled workpiece and cutting tool, but also may give damage on the machined surface of workpiece or danger for a operator. The flow type continuous chip may bring the low productivity in high speed any heavy cutting, automatic machining process and non-human factory. There are two type of chip break process ; controlling cutting condition and using chip breaker. In present study we carried out the experiment on new type chip breaker compared with conventional type and proved the efficiency of a new type and showed the chip break condition to be applied in actual metal cutting. In the experiment SM 20 C as a workpiece material and WC as a tool material were used and cutting speed of 30-150m/min, feed of 0.071-0.210mm/rev and depth of cut of 1mm were applied as cutting condition. The results of the experiment are as follows : (1) The mechanism of chip curl can be explained more clearly by plastic flow of workpiece material and moment of shearing force. (2) The most effective radius of curled chip and flat distance from cutting edge is 2.0-2.5mm and 1.5mm in both types. (3) The effective inclination angle of chip break surface and side cutting edge angle are 30.deg.- 45.deg. and 20.deg. in conventional type, while the radius of arc surface, lower arc angle A, upper arc angle B and side cutting edge angle are 3mm, 20.deg.- 45.deg., 0.deg.- 45.deg. and 10.deg.- 20.deg. in new type. (4) The probability to be obtained 100% chip breaking ratio is much higher in new type than in conventional type.

The Prediction of Chip Flow Angle on chip Breaker Shape Parameters (칩브레이커 형상변수에 의한 칩유동각 예측)

  • 박승근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.96-101
    • /
    • 2000
  • In machining with cutting tool inserts having complex chip groove shape the flow curl and breaking pattern of the chip are different than in flat-face inserts. In the present work an effort is made to understand the three basic phe-nomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the ini-tial chip flow the subsequent development of up and side curl and the final chip breaking due to the development of tor-sional and bending stresses. in this paper chip flow angle in a groove type and pattern type inserts. The expres-sion for chip flow angle in groove type and pattern type inserts is also verified experimentally using high speed filming techniques.

  • PDF

The Prediction of Chip Flow Angle on Chip Breaker Shape Parameters (칩브레이커 형상변수에 의한 칩유동각 예측)

  • 박승근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.381-386
    • /
    • 1999
  • In machining with cutting tool inserts having complex chip groove shape, the flow, curl and breaking patterns of the chip are different than in flat-face type inserts. In the present work, an effort is made to understand the three basic phenomena occurring in a chip since its formation in machining with groove type and pattern type inserts. These are the initial chip flow, the subsequent development of up and side curl and the final chip breaking due to the development of torsional and banding stresses. In this paper, chip flow angle in a groove type and pattern type inserts. The expression for chip flow angle in groove type and pattern type insets is also verified experimentally using high speed filming techniques.

  • PDF