• Title/Summary/Keyword: china shale gas

Search Result 8, Processing Time 0.029 seconds

Review on Research and Development of Shale Gas in China

  • Zhuang, Li;Kim, Kwang Yeom;Sun, Zhi-xue;Li, Yan-chao
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.323-329
    • /
    • 2015
  • Shale gas reserves in China are large, although shale gas production is still in its infancy. This paper reviews Chinese national policies and guidelines related to shale gas development, in particular those related to recent progress in the development of shale gas reserves in Sichuan Province and Chongqing since February 2015. In addition, three large-scale R&D projects related to shale gas development, funded by the Government of China, are introduced, and the scope of the work in each project is described.

Investigation on Supporting Policies and Problems of Shale Gas Development in China (중국 셰일가스 개발 문제점과 지원정책 분석)

  • Lee, Chaeyoung;Yoon, Junil;Lee, Hong;Lee, Youngsoo;Shin, Changhoon
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.54-65
    • /
    • 2015
  • China holding the world largest shale resources, has been trying to develop their domestic shale gas fields mainly with its NOCs. Chinese shale industry looks likely to have high potential to grow in the future, considering the eager support of Chinese government and the rapid development of relevant technologies by NOCs. However, there are opposite opinions as well that Chinese shale gas could not play a positive short-term results because of the complexity of structural geology, inadequacy of water resources and related infrastructure. Recently, Korean companies began to be interseted in Chinese shale gas industry, because of the special relationships with Korean industries in terms of geographic proximity and better opportunities due to the early phase of shale gas business in China. In this study, it was tried to help those companies looking out of future Chinese shale gas industry that surveying current status and problems of Chinese shale gas industry and relevant industries and investigating some trials and policies driven by China government. As a result, the various and long-term problems in Chinese shale development were reviewed and the active supports and polices of Chinese government, NOC's trials for establishments of their independent technologies and the cooperation with foreign companies or M&As were also investigated.

Analysis on Survey, Exploration and Development Policy and Technology of China : Focused on Shale Gas Resources (셰일가스 자원을 중심으로 한 중국의 에너지·광물자원 조사·탐사·개발 기술 정책분석)

  • Lee, Jae-Wook;Kim, Seong-Yong;Ahn, Eun-Young;Park, Jung-Kyu
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.291-302
    • /
    • 2014
  • The Chinese government and its agencies were trying in order to solve the unstability of resource supply and demand. Ministry of Land and Resources of China(MLR) carried out a lot of national-level policy and planning for estimating the domestic mineral and energy resources potential and recoverable reserves, as the Chinese land and resources survey plan(1999~2010), the Chinese mineral resource survey and exploration plan(2008~2020), announcement for shale gas industry policies of China, the Chinese shale gas resources evaluation and selection project for its development priority areas(2012), and the plan for Chinese shale gas development(2011~2015). The two large sedimentary basins of Chinese shale gas reserves are Sichuan and Tarim basins with excellent potential, accounting for majority of the estimated national reserves. Recoverable gas-bearing shale of China was surveyed to be widespread. The volume of recoverable shale gas reservoirs in China has been estimated to be around 31 trillion cubic meters(1,115 trillion cubic feet). China is one of only three countries with the US and Canada to produce shale gas in commercial quantities. China is concentrating on technology development to enhance commercial production of shale gas, and on survey and exploration activities to increase its recoverable reserves. The trends related to shale gas development and R&D activities in China to respond to changes in international oil market should be actively monitored based on analysis of Chinese policies and technology.

Global Trends of Shale Gas Development Information (셰일가스 개발정보의 글로벌 동향분석)

  • Koo, Young Duk;Kim, Young-In;Park, Kwan Soon
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.193-204
    • /
    • 2014
  • Shale gas has caused a change in the dynamics of gas market since development of horizontal drilling technic and hydraulic fracturing technic caused its commercial production. The commercial amount of shale gas is 187.5 trillions $m^3$ so human can use it for 59 years and the amount will increase in the future. Several nations such as USA, Canada, China and Russia have more and more interested in shale gas as a futuristic major energy source. In accordance with this trend in the world, the amount of studying theses for development of shale gas have increased so their theses became important increasingly. The number of searched theses (1986 ~ The first half of 2013) is 3,468 and has increased recently. Among 89 nations studying shale gas, USA has 637 theses as No.1 in the world. 1,813 global studying institutes have studied shale gas; in the analysis result of several studying institutes, US geological survey institute was ranked as No.1 for the quality level of shale gas study and intensity of global cooperation.

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Stress field interference of hydraulic fractures in layered formation

  • Zhu, Haiyan;Zhang, Xudong;Guo, Jianchun;Xu, Yaqin;Chen, Li;Yuan, Shuhang;Wang, Yonghui;Huang, Jingya
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.645-667
    • /
    • 2015
  • Single treatment and staged treatments in vertical wells are widely applied in sandstone and mudstone thin interbedded (SMTI) reservoir to stimulate the reservoir. The keys and difficulties of stimulating this category of formations are to avoid hydraulic fracture propagating through the interface between shale and sand as well as control the fracture height. In this paper, the cohesive zone method was utilized to build the 3-dimensional fracture dynamic propagation model in shale and sand interbedded formation based on the cohesive damage element. Staged treatments and single treatment were simulated by single fracture propagation model and double fractures propagation model respectively. Study on the changes of fracture vicinity stress field during propagation is to compare and analyze the parameters which influence the interfacial induced stresses between two different fracturing methods. As a result, we can prejudge how difficult it is that the fracture propagates along its height direction. The induced stress increases as the pumping rate increasing and it changes as a parabolic function of the fluid viscosity. The optimized pump rate is $4.8m^3/min$ and fluid viscosity is $0.1Pa{\cdot}s$ to avoid the over extending of hydraulic fracture in height direction. The simulation outcomes were applied in the field to optimize the treatment parameters and the staged treatments was suggested to get a better production than single treatment.

Review of the Current Policy Related to Exploration and Development of Mineral Resources in China (중국의 광물자원 탐사개발 관련 최신 정책 고찰)

  • Kim, Seong-Yong;Bae, Jun-Hee;Lee, Jae-Wook;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.201-212
    • /
    • 2016
  • Due to growing problems securing stable mineral and energy resources with international political and economic changes, China has dedicated itself to strategies and policies to enhance its stable mineral and energy resources security. China has established a rare earth elements(REE) industry policy after the abolition of the REE exports quota system. China's six large REE companies have also been integrated into REE mining, smelting and refining companies. Efforts have been increased to enhance China's energy security through unconventional oil and gas exploration and development investment, as well as effort in R&D. The country will focus on technology development and exploration to promote commercial production of unconventional oil and gas based on countries with shale gas. China is making long-term contracts and joint ventures to ensure the acquisition of reliable mineral and energy resources from abroad. Government of China has proposed a range of initiatives, such as the integration of resources development strategies and environmental development strategies, internationalization of resource management, supply diversification and advancement, strengthening industry linking strategy, grouping and diversification strategy.

Latest welding technology for storage and transportation facilities of liquified natural gas (LNG저장과 수송설비의 최신용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.17-27
    • /
    • 2016
  • The need for storage and transportation facilities of liquefied natural gas have increased significantly because of global environmental regulations and recent shale gas innovation in North America. There is severe competition between Korea, Japan, and China for receiving manufacturing orders of LNG carriers or LNG storage tanks. Rationalization of the welding process used in the manufacturing of LNG facilities plays an important role in the above competition. This review paper presents the current global status and tendency for the development of latest welding technologies for LNG storage and transportation facilities. This article intends to present materials for raising the domestic competitive power for receiving manufacturing orders of LNG facilities.