• Title/Summary/Keyword: chimneys and towers

Search Result 6, Processing Time 0.017 seconds

Field measurement of damping in industrial chimneys and towers

  • Cho, K.P.;Tamura, Y.;Itoh, T.;Narikawa, M.;Uchikawa, Y.;Nishimura, I.;Ohshima, Y.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 2001
  • In the design of industrial chimneys and towers, structural engineers must assume a level of the inherent damping in the structures. In order to better estimate the dynamic response of those structures, actual damping was measured from wind-induced vibration signals of chimneys and towers and its characteristics with respect to the response levels, the structural systems, and the wind direction were discussed. Damping ratio and natural frequency for three chimneys and two towers were calculated using random decrement technique.

Moment-curvature relationships to estimate deflections and second-order moments in wind-loaded RC chimneys and towers

  • Menon, Devdas
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.255-269
    • /
    • 1998
  • Second-order moments of considerable magnitude arise in tall and slender RC chimneys and towers subject to along-wind loading, on account of eccentricities in the distributed self-weight of the tower in the deflected profile. An accurate solution to this problem of geometric nonlinearity is rendered difficult by the uncertainties in estimating the flexural rigidity of the tower, due to variable cracking of concrete and the 'tension stiffening' effect. This paper presents a rigorous procedure for estimating deflections and second-order moments in wind-loaded RC tubular towers. The procedure is essentially based on a generalised formulation of moment-curvature relationships for RC tubular towers, derived from the experimental and theoretical studies reported by Schlaich et al. 1979 and Menon 1994 respectively. The paper also demonstrates the application of the proposed procedure, and highlights those conditions wherein second-order moments become too significant to be overlooked in design.

Vortex excitation model. Part II. application to real structures and validation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.477-490
    • /
    • 2013
  • This paper presents results of calculations performed according to our own semi-empirical mathematical model of critical vortex excitation. All calculations are carried out using own computer program, which allows the simulation of both the across-wind action caused by vortices and the lateral response of analysed structures. Vortex excitation simulations were performed in real time taking into account wind-structure interaction. Several structures of circular cross-sections were modelled using a FEM program and calculated under the action of critical vortex excitation. Six steel chimneys, six concrete chimneys and two concrete towers were considered. The method of selection and estimation of the experimental parameters describing the model are also presented. Finally, the results concerning maximum lateral top displacements of the structures are compared with available full-scale data for steel and concrete chimneys.

Vortex excitation model. Part I. mathematical description and numerical implementation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.457-476
    • /
    • 2013
  • This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed.

Numerical Study of Flow Characteristics over Square Cylinders with an Attached Splitter Plate

  • Nguyen, Van Minh;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.86-95
    • /
    • 2018
  • The fluid flow over structures has been widely investigated by many researchers because its extensive application in offshore structures, skyscrapers, chimneys and cooling towers, brides. In the viewpoint of reducing the drag for offshore structure, it becomes challenging problem in the field of hydrodynamic of offshore structure. The purpose of this study is to investigate a flow over a square cylinder with an attached splitter plate using RANS method. First, RANS turbulent models such as a standard $k-{\omega}$ model, SST $k-{\omega}$ model, RNG $k-{\varepsilon}$ model, realizable $k-{\varepsilon}$ model, standard $k-{\varepsilon}$ model were used for choosing suitable turbulent model which has the best agreement with available experimental result. Drag of single cylinder estimated by using standard $k-{\omega}$ has a good agreement with published experimental result. Therefore, the stand $k-{\omega}$ was selected for simulation for flow over a square cylinder with an attached plate. Second, the numerical results of drag of square cylinder with an attached splitter plate in various length of an attached plate were performed using RANS method in ANSYS Fluent. In this paper, the numerical simulations were conducted at a Reynolds number of 485 and the thickness of the splitter plate is chosen as a constant value about 10% of cylinder width. The numerical results of drag coefficient of square cylinder are compared with experimental result published by other researchers. Finally, the effect of the splitter plate attached to the rear side of the square cylinder has been investigated numerically with a focus on the drag coefficient and flow characteristic. As a result, the drag coefficient decreases with an increase in splitter plate length.

A Study on Classifications and Trends with Convergence Form Characteristics of Architecture in Tall Buildings (초고층빌딩의 융합적 건축형태 분류와 경향에 관한 연구)

  • Park, Sang Jun
    • Korea Science and Art Forum
    • /
    • v.37 no.5
    • /
    • pp.119-133
    • /
    • 2019
  • This study is as skyscrapers are becoming increasingly taller, more constructors have decided the height alone cannot be a sufficient differentiator. As a result, atypical architecture is emerging as a new competitive factor. Also, it can be used for symbolizing the economic competitiveness of a country, city, or business through its form. Before the introduction of digital media, there was a discrepancy between the structure and form of a building and correcting this discrepancy required a separate structural medium. Since the late 1980s, however, digitally-based atypical form development began to be used experimentally, and, until the 2000s, it was used mostly for super-tall skyscrapers for offices or for industrial chimneys and communication towers. Since the 2000s, many global brand hotels and commercial and residential buildings have been built as super-tall skyscrapers, which shows the recent trend in architecture that is moving beyond the traditional limits. Complex atypical structure is formed and the formative characteristics of diagonal lines and curved surfaces, which are characteristics of atypical architecture, are created digitally. Therefore, it's goal is necessary to identify a new relationship between the structure and forms. According to the data of Council on Tall Buildings and Urban Habitat (CTBUH), 100-story and taller buildings were classified into typical, diagonal, curved, and segment types in order to define formative shapes of super-tall skyscrapers and provide a ground of the design process related to the initial formation of the concept. The purpose of this study was to identify the correlation between different forms for building atypical architectural shapes that are complex and diverse. The study results are presented as follows: Firstly, complex function follows convergence form characteristics. Secondly, fold has inside of architecture with repeat. Thirdly, as curve style which has pure twist, helix twist, and spiral twist. The findings in this study can be used as basic data for classifying and predicting trends of the future super-tall skyscrapers.