Yang, Hyeon;Lee, Bo Ram;Lee, Hwi-Cheul;Jung, Sun Keun;Kim, Ji-Youn;No, Jingu;Shanmugam, Sureshkumar;Jo, Yong Jin;Lee, Haesun;Hwang, Seongsoo;Byun, Sung June
Animal Bioscience
/
v.34
no.8
/
pp.1321-1330
/
2021
Objective: Transgenic hens hold a great promise to produce various valuable proteins. Through virus transduction into stage X embryo, the transgene expression under the control of constructed chicken ovalbumin promoters has been successfully achieved. However, a validation system that can evaluate differently developed ovalbumin promoters in in vitro, remains to be developed. Methods: In the present study, chicken oviduct epithelial cells (cOECs) were isolated from oviduct tissue and shortly cultured with keratinocyte complete medium supplemented with chicken serum. The isolated cells were characterized with immunofluorescence, western blot, and flow cytometry using oviduct-specific marker. Chicken mutated ovalbumin promoter (Mut-4.4-kb-pOV) was validated in these cells using luciferase reporter analysis. Results: The isolated cOECs revealed that the oviduct-specific marker, ovalbumin protein, was clearly detected by immunofluorescence, western blot, and flow cytometry analysis revealed that approximately 79.40% of the cells contained this protein. Also, luciferase reporter analysis showed that the constructed Mut-4.4-kb-pOV exhibited 7.1-fold (p<0.001) higher activity in the cOECs. Conclusion: Collectively, these results demonstrate the efficient isolation and characterization of cOECs and validate the activity of the constructed ovalbumin promoter in the cultured cOECs. The in vitro validation of the recombinant promoter activity in cOECs can facilitate the production of efficient transgenic chickens for potential use as bioreactors.
Chicken egg ovalbumin is a non-inhibitory member of the serpin (serine protease inhibitors) family whose members share a common tertiary fold. In the present study, we succeeded in high-level production of a disulfide-free form of refolded recombinant ovalbumin. Conformational characterization of the recombinant ovalbumim revealed that it is well-folded, following two-state unfolding transition with the midpoint of transition at 4.7 M at $25^{\circ}C$. This value is very close to that of the reduced form of authentic ovalbumin. The recombinant ovalbumin can serve as a model molecule of non-inhibitory serpins in comparative studies with inhibitory members of the serpin family.
Jang, Tae Young;Koo, Bon Chul;Kwon, Mo Sun;Roh, Ji Yeol;Kim, Teoan;Park, Young Sik
Reproductive and Developmental Biology
/
v.37
no.3
/
pp.91-96
/
2013
Transgenic chickens have been spotlighted as an highly potent bioreactor for their fecundity, short generation time, and eggs associated with mass production of protein. In this study, we generated transgenic chickens exhibiting oviduct specific expression of human growth hormone fused to human transferrin for oral administration. Gene of the modified growth hormone located at downstream ovalbumin promoter (~3.6 kb) was introduced to stage X blastodermal cell employing retrovirus vector system. Several transgenic chickens were successfully generated. However, genomic analyses showed unexpected deletion within the transgene. The modification of the transgene seemed to occur during germ cell formation because the deletion was detected only from the sperm DNA of the G0 founder animal. There was no evidence of deletion in the somatic cell DNA samples of the same chicken. Consequently, same pattern of the deletion was confirmed in both somatic and germ cells of the G1 progeny.
Antigenicities of ovomucoid (OM) and ovalbumin (OA) in chicken egg white (EW) before and after NaOH, heat, and pretense treatments were examined by competitive indirect enzyme-linked immunosorbent assay (ciELISA), using rabbit anti-OM and-OA antibodies, Enzymatic hydrolysis of EW did not effectively reduce antigenicity of OM, whereas that of OA was decreased to 1/5,000-1/100,000 by treatment of plant-derived or microbial pretenses. Heat treatment below $100^{\circ}C$ for 30min did not decrease antigenicity of OM, whereas that of OA in heated EW increased maximally to 100 times, Antigenicity of OM in EW effectively decreased by NaOH treatment, disappearing at over 1% NaOH, whereas that of OA increased. Additional heat treatment of NaOH-treated EW at $70^{\circ}C$ for 15min slightly reduced antigenicities of OM and OA.
Abeyrathne, Nalaka Sandun;Lee, Hyun Yong;Ahn, Dong Uk
Food Science of Animal Resources
/
v.33
no.4
/
pp.501-507
/
2013
Lysozyme was trapped from $2{\times}$ diluted egg white using Amberlite FPC 3500 ion exchange resin (1 g/10mL of egg white). The lysozyme bound to the resin was recovered using 0.1 N glycine-NaOH buffers, pH 9.0, containing 0.5 M NaCl. After separating lysozyme, the pH of the egg white solution was adjusted to 4.75 and centrifuged to remove interfering proteins. The supernatant was collected, added with 2.5% citric acid and 5.0% ammonium sulfate combination to precipitate egg white proteins, except for ovalbumin. After centrifugation, both supernatant (S1) and precipitant were collected. The precipitant was dissolved with 4 volumes of distilled water, and then 2.0% ammonium sulfate and 1.5% citric acid combinations added, stirred overnight in a cold room, and centrifuged. The resulting supernatant (S2) was pooled with the first supernatant (S1), desalted using an ultrafiltration unit, heat-treated at $70^{\circ}C$ for 15 min, and then centrifuged. The supernatant was collected as an ovalbumin fraction and lyophilized. The separated proteins were confirmed using Western blotting. The yield of lysozyme and ovalbumin was > 88.9% and > 97.7%, respectively, and the purity of lysozyme and ovalbumin was > 97% and 87%, respectively. The results indicated that the protocol was simple, and separated lysozyme and ovalbumin effectively.
Yang, Hyeon;Kim, Kyung-Woon;Kim, Jeom Sun;Woo, Jae-Seok;Lee, Hwi-Cheul;Choi, Hoonsung;Jung, Sun Keun;Sureshkumar, Shanmugam;Lee, Haesun;Oh, Keon Bong;Byun, Sung June
Korean Journal of Poultry Science
/
v.46
no.1
/
pp.17-24
/
2019
Chickens have been considered as well-defined animal bioreactor. The optimized ovalbumin promoter is essential for recombinant protein production in transgenic chicken. Here we try to compare the activity and identify the effect of estrogen on ovalbumin promoter according to each promoter length with estrogen response element (ERE) existence. We cloned two (2.8 and 5.5 kb) ovalbumin promoters that the 5.5 kb contained the ERE but the 2.8 kb did not, and these two promoters were cloned to pGL4.11 vector. Additionally, we constructed another pGL4.11 vector containing of the 4.4 kb (with ERE) ovalbumin promoter deleted with 1 kb between ERE region and the 2.8 kb promoter. For reporter assay, HeLa, MES-SA, LMH/2A, and cEF cells were transfected with all the pGL4.11 vectors. The comparative analysis showed that the mutated 4.4 kb promoter has more potent activity than the 2.8 and 5.5 kb promoters in HeLa, MES-SA, and LMH/2A cells. However, there is no significant difference in cEFs. Also, these cells transfected with the mutated 4.4 kb promoter were treated with the $17{\beta}$-estradiol (0~3,000 nM) and HeLa, MES-SA, and LMH/2A cells showed estrogen responsibilities, but cEFs did not. Besides, the mutated 4.4 kb promoter has still higher activity than the 2.8 and 5.5 kb promoter, and there is no transcriptional induction effect in 2.8 kb promoter at 500 nM estrogen that is blood concentration of laying hens. Hence our study strongly suggested that the mutated 4.4 kb promoter is considered as one of the most efficient length for generating transgenic chicken.
This study was carried out to separate ovotransferrin in chicken egg white by gel chromatography and heparin affinity chromatography. In gel filtration which was performed with 50mM Phosphate buffer (pH 7.2, 0.15M salt) at a flow rate of 2.0 ml/min, ovotransferrin and ovalbumin were eluted together in fraction number 11-16. In order to separate pure ovotransferrin, fraction No. 12-14 of them which have high concentration of ovotransferrin were concentrated and rechromatographed. However, the ovotransferrin did not separated clearly. In heparin affinity chromatography, the separation was performed with 50mM ethylaminetetraacetic acid (EDTA, pH7.2) and 50mM Phosphate buffer (pH 7.2, 0.15M salt contained) on ferrous and ferric ion saturated column at as same flow rate as gel filtration system's. Ovotransferrin and albumin were eluted together at 10-15min (fraction No.3) and 15-20min (fraction No.4), respectively. However, purified ovotransferrin was eluted at 156-165min and 165-175min (tube No.32-33) with 50 mM phosphate buffer (pH 7.2, 0.15M salt free), respectively. Heparin affinity chromatography with ferric ion saturated column was resulted in the best separation of ovotransferrin rather than separation by gel chromatography and ferrous ion saturated heparin affinity chromatography.
Myint, Si Lhyam;Shimogiri, Takeshi;Kawabe, Kotaro;Hashiguchi, Tsutomu;Maeda, Yoshizane;Okamoto, Shin
Asian-Australasian Journal of Animal Sciences
/
v.23
no.9
/
pp.1137-1144
/
2010
In this study, to examine genetic variability within a breed and genetic relationships between populations/breeds, we genotyped 606 birds from seven Japanese native chicken breeds at seven polymorphic loci of egg white proteins and compared those with Asian native chicken populations and commercial breeds. Genotyping of the Japanese native breeds showed that ovalbumin, two ovoglobulins and ovotransferrin were polymorphic, but ovomacroglobulin, ovoflavoprotein and lysozyme were monomorphic. The proportion of polymorphic loci ($P_{poly}$) and average heterozygosity ($\bar{H}$) within a population ranged from 0.286 to 0.429 and from 0.085 to 0.158, respectively. The coefficient of gene differentiation ($G_{ST}$) was 0.250 in the Japanese native chicken breeds. This estimate was higher than that of Asian native chicken populations ($G_{ST}$ = 0.083) and of commercial breeds ($G_{ST}$ = 0.169). Dendrogram and PCA plot showed that Satsuma-dori, Jitokko, Amakusa-daio and Hinai-dori were closely related to each other and grouped into Asian native chickens and that Tsushima-jidori, Nagoya and Chan (Utaichan) were ramified far from other Japanese native chicken breeds. The egg white protein polymorphisms demonstrated that the population differentiation of the seven Japanese native chicken breeds was relatively large.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.