• Title/Summary/Keyword: chicken breast muscle

Search Result 84, Processing Time 0.026 seconds

Effect of Antemortem and Postmortem Environmental Temperatures on Biochemical Metabolism and Tenderness in Chicken Muscels (도계처리 전후의 환경온도가 계육의 생화학적 대사 및 연도에 미치는 영향)

  • 이유방
    • Korean Journal of Poultry Science
    • /
    • v.6 no.1
    • /
    • pp.24-30
    • /
    • 1979
  • 1. The effects of heat stress (38$^{\circ}C$), cold stress (4$^{\circ}C$) and extreme cold stress (-20$^{\circ}C$) before slaughter on the tenderness and postmortem glycolysis if the excised chicken breast muscle were studied Heat stress significantly (p 0.05) increased the toughness of breast muscle. Though statistically not significant, cold stress also adversely affected the tenderness. The heat-stressed birds showed higher zero hr glycogen higher zero hr pH and significantly (p 0.05) love. ultimate pH then the controls. The cold-stressed birds showed intermediate values in these parameters. Highly significant correlations. were observed between shear value and each of these three parameters. Glycolysis rate ana final moisture content were minor factors which affected the muscle tenderness to a limited extent. The slightly elevated lactate-dehydrogenase and creatine phosphokinase activities in serum and breast muscle of stressed birds failed to account for any variations in tenderness. 2. Chicken breast and thigh muscles were subjected to different environmental temperatures to determine if the phenomenon of cold shortening exists in chicken muscle. For both breast and thigh muscles, minimum shortening was observed in the 4-10$^{\circ}C$t range. Muscles held at 0$^{\circ}C$ showed a slightly higher extent of shortening than at 4$^{\circ}C$; where as muscles held at above 20$^{\circ}C$ showed a severe shortening effect. It was concluded that no apparent cold shortening was detected in chicken muscle except at 0$^{\circ}C$ and even at 0$^{\circ}C$ and even at 0$^{\circ}C$ the extent of shortening was of a small magnitude compared to bovine muscles. Since high temperature induces a much greater shortening, muscle temperature must be lowered to below 20$^{\circ}C$ as early as possible to prevent excessive muse]e shortening.

  • PDF

Differences in the Quality Characteristics between Commercial Korean Native Chickens and Broilers

  • Choe, Jun-Ho;Nam, Ki-Chang;Jung, Samooel;Kim, Bin-Na;Yun, Hye-Jeong;Jo, Cheo-Run
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2010
  • To investigate the differences in the quality characteristics between commercial Korean native chicken (KNC) and broiler (CB), nutritive and quality parameters of the two chicken species were determined. The KNC thigh muscle had a lower content of crude fat and higher crude ash than the CB thigh. In regards to the fatty acid composition, KNC breast muscle had a higher content of arachidonic acid (C20:4) than CB. The level of inosine was higher in the CB thigh muscle than KNC but there was little difference in other nucleotide compounds. The KNC breast had higher amounts of glycine, alanine, and proline than CB, which are closely related to high quality meat flavor. The sensory acceptance was not significantly different between the breast and thigh of KNC and CB. However, KNC had higher cohesiveness, chewiness and gumminess than CB, which are indicative of a unique texture property. Based on these results, commercial KNC may have superior nutritional quality, taste, and unique texture when compared with CB. Thus, the consumer preference for KNC may be partially explained by these distinctive quality characteristics.

Gene Expression of Heart and Adipocyte Fatty Acid-binding Protein in Chickens by FQ-RT-PCR

  • Tu, Yunjie;Su, Yijun;Wang, Kehua;Zhang, Xueyu;Tong, Haibing;Gao, Yushi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.987-992
    • /
    • 2010
  • This study was to detect the expression of heart fatty acid-binding protein (H-FABP) and adipocyte fatty acid-binding protein (A-FABP) gene mRNA in different tissues of Rugao and Luyuan chickens at 56 d and 120 d by real-time fluorescence quantitative reverse transcription polymerase-chain reaction (FQ-RT-PCR). The primers were designed according to the sequences of HFABP, A-FABP and GAPDH genes in Gallus gallus, which were used as target genes and internal reference gene, respectively. The levels of H-FABP and A-FABP gene expression were detected by SYBR Green I FQ-RT-PCR. The relative H-FABP and A-FABP gene mRNA expression level was calculated with 2-$^{{\Delta}Ct}$. Melting curve analysis showed a single peak of three genes. Intramuscular fat (IMF) content in breast muscle and leg muscle of the two chicken breeds at 120 d was higher than at 56 d. IMF content in breast muscle and leg muscle at 56 d and 120 d in Luyuan was significantly higher than in Rugao, however, abdominal fat of Luyuan was significantly lower than that of Rugao. The relative H-FABP gene mRNA expression level in cardiac muscle was the highest in both chicken breeds. The relative H-FABP and A-FABP gene expression of different tissues in Luyuan was higher than in Rugao. H-FABP gene mRNA expression had a negative effect on IMF of leg and breast muscles, and was significantly negatively correlated with IMF content. The relative A-FABP gene mRNA level in abdominal fat was higher than in liver. The A-FABP gene mRNA was not expressed in leg, breast and cardiac muscles. A-FABP gene mRNA expression level was significantly positively correlated with abdominal fat and had a significant effect on abdominal fat but not IMF content.

Higher Protein Digestibility of Chicken Thigh than Breast Muscle in an In Vitro Elderly Digestion Model

  • Seonmin Lee;Kyung Jo;Hyun Gyung Jeong;Seul-Ki-Chan Jeong;Jung In Park;Hae In Yong;Yun-Sang Choi;Samooel Jung
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.305-318
    • /
    • 2023
  • This study investigated the protein digestibility of chicken breast and thigh in an in vitro digestion model to determine the better protein sources for the elderly in terms of bioavailability. For this purpose, the biochemical traits of raw muscles and the structural properties of myofibrillar proteins were monitored. The thigh had higher pH, 10% trichloroacetic acid-soluble α-amino groups, and protein carbonyl content than the breast (p<0.05). In the proximate composition, the thigh had higher crude fat and lower crude protein content than the breast (p<0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of myofibrillar proteins showed noticeable differences in the band intensities of tropomyosin α-chain and myosin light chain-3 between the thigh and breast. The intrinsic tryptophan fluorescence intensity of myosin was lower in the thigh than in the breast (p<0.05). Moreover, circular dichroism spectroscopy of myosin revealed that the thigh had higher α-helical and lower β-sheet structures than the breast (p<0.05). The cooked muscles were then chopped and digested in the elderly digestion model. The thigh had more α-amino groups than the breast after both gastric and gastrointestinal digestion (p<0.05). SDS-PAGE analysis of the gastric digesta showed that more bands remained in the digesta of the breast than that of the thigh. The content of proteins less than 3 kDa in the gastrointestinal digesta was also higher in the thigh than in the breast (p<0.05). These results reveal that chicken thigh with higher in vitro protein digestibility is a more appropriate protein source for the elderly than chicken breast.

Evaluation of Meat from Native Chickens: Analysis of Biochemical Components, Fatty Acids, Antioxidant Dipeptides, and Microstructure at Two Slaughter Ages

  • Ali, Mahabbat;Lee, Seong-Yun;Park, Ji-Young;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.788-801
    • /
    • 2021
  • This study examined biochemical components, fatty acids, antioxidant dipeptides, and muscle fiber density of breast and thigh muscles from Korean new native chicken strains (A and B) at two slaughter ages, compared with white semi-broiler (W) or broilers. The pH values were different by chicken breed. The new native strains had the lowest fat content in the breast at 12 wk (p<0.05). Regardless of the muscles, A and B at 12 wk had higher levels of arachidonic acid (ARA; C20:4), docosahexaenoic acid (DHA; C22:6), and nervonic acid (C24:1) than broilers (p<0.05). A similar result was observed for the polyunsaturated fatty acids (PUFAs) and polyunsaturated and saturated fatty acids ratio (P/S) content in the breast. Irrespective of the muscles, A and B enriched with omega-3 fatty acids had a lower ω-6/ω-3 PUFA ratio than broilers (p<0.05) at 12 wk. Of the antioxidant di-peptides, the anserine contents were highest in A and B than in the W or broilers (p<0.05), regardless of the muscles and slaughter ages. Furthermore, the breast meat from A and B contained a higher muscle fiber density for both slaughter ages than the W and broilers (p<0.05). Based on these findings, even if the commercial birds (broilers or W) are raised under the similar environmental conditions as A and B, the new native chicken strains have distinct meat quality attributes, particularly higher ARA and DHA levels, lower ω-6/ω-3 PUFA ratio, and higher anserine contents.

EFFECT OF ANTE-MORTEM STRESS ON POST-MORTEM CHANGES OF TITIN I (α-CONNECTIN) INTO TITIN II (β-CONNECTIN) AND NEBULIN IN THE LIGHT AND DARK MUSCLE OF TAIWAN COUNTRY CHICKEN

  • Lin, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.405-411
    • /
    • 1994
  • Purified myofibrils were prepared from ante-mortem stress and control lots of Taiwan country chicken breast and thigh muscles at death and afler storage at $4^{\circ}C$ for 0, 1, 2, 3, and 7 days post-mortem. Sodium dodecyl sulfate polycrylamide gel electrophoresis (3.2%) and densitometer were used to examine the effect of ante-mortem stress and control storage of muscle on titin and nebulin. Results indicated that titin and nebulin were more rapidly degraded in the control and the ante-mortem stress light muscles than in the control and ante-mortem dark muscles of Taiwan country chicken. In contrast, nebulin was shown to be more resistance to degradation in the ante-mortem stress dark muscle than in the control light muscle.

The Effect of Dammarane Glycosides of Panax ginseng on Primary Cultured Chicken Embryonic Muscle Cells (인삼의 dammarane계 glycosides 분획물이 일차 배양한 계배의 근육세포에 미치는 영향)

  • Jung, Young-Kyeong;Park, Mi-Jung;Song, Jin-Ho;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.33 no.3
    • /
    • pp.161-166
    • /
    • 1989
  • Effects of dammarane glycosides of Panax ginseng on primary cultured chicken embryonic skeletal muscle cells were studied by microscopic observation and determination of the activity of acetylcholinesterase. Muscle cells were prepared from the breast of 12-day-old chicken embryo and cultured with either a medium consisted of 87.5% Dulbecco's Modified Eagle Medium (DMEM), 10% horse serum and 2.5% chicken embryonic extract or a medium consisted of 90% DMEM and 10% horse serum. It was observed that dammarane glycosides of Panax ginseng seemed to show the tendency to stimulate the growth and the differentiation of the muscle cells cultured with a medium consisted of 90% DMEM and 10% horse serum under microscopic observation. The activity of acetylcholinesterase in the muscle cells cultured with a medium consisted of 90% DMEM and 10% horse serum was increased by dammarane glycosides of Panax ginseng.

  • PDF

Comparison of Food Components in Various Parts of White Muscle from Cooked Skipjack Tuna Katsuwonus pelamis as a Source of Diet Foods (다이어트 식품 소재로서 자숙 가다랑어(Katsuwonus pelamis) 백색육의 부위별 식품성분 특성)

  • Kim, Hyeon-Jeong;Kim, Min-Ji;Kim, Ki-Hyun;Ji, Seung-Jun;Lim, Kyung-Hun;Park, Kwon-Hyun;Shin, Joon-Ho;Heu, Min-Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.4
    • /
    • pp.307-316
    • /
    • 2012
  • This study evaluated the possible use of white muscle from cooked skipjack tuna as a constituent of diet foods. White muscles from the belly and dorsal area of cooked skipjack tuna were identified as anterior, median, and posterior. The skipjack tuna white muscle contained more moisture and ash (except for part I in both the belly and dorsal muscles) than chicken muscle, while it had less crude protein and crude lipid (except for part II in belly muscle). The yield was the highest in part I of both the dorsal and belly parts among the various parts of white muscles. The skipjack tuna white muscle contained 14-18% fewer calories than chicken breast muscle. Part I from both the belly and dorsal muscles had higher total amino acid contents than the other parts, but lower contents than chicken breast muscle. White muscle of skipjack tuna was rich in minerals, such as phosphorus, iron, and zinc. The total free amino acid content of part I in the belly and dorsal muscles was 1,152.1 and 1,215.7 mg/100 g, respectively, and was 1.7-1.8 times higher than in chicken breast muscle. The major amino acids in the white muscles from skipjack tuna were taurine, histidine, anserine, and carnosine. Based on these results, if it is possible to mask the fish odor, all parts of the white muscle from skipjack tuna could be used as constituents of diet foods.

Quality Characteristics of Marinated Chicken Breast as Influenced by the Methods of Mechanical Processing

  • Kim, Hack-Youn;Kim, Kon-Joong;Lee, Jong-Wan;Kim, Gye-Woong;Choe, Ju-Hui;Kim, Hyun-Wook;Yoon, Yohan;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.101-107
    • /
    • 2015
  • The aim of this study was to investigate the effects of various marination processes on the quality characteristics of chicken breast prepared with chicken feet gelatin and wheat fiber. The chicken feet gelatin was swollen with hydrochloric solution (0.1 N HCl, pH $1.31{\pm}0.02$) and dehydrated by freeze-drying. The composition (w/w) of the marinade was water (10%), soy sauce (12%), phosphate (0.3%), wheat fiber (1.5%), and chicken feet gelatin (1.5%). Three samples of chicken breast were manufactured with Tumbler (only tumbler), Tenderizer (tenderizer and tumbler), and Injector (injector and tumbler). The water content of the Injector sample was significantly higher than those of the Tumbler and Tenderizer samples (p<0.05). During heating, the lightness of all chicken breasts increased and the redness decreased. The tumbling and cooking yield of the Injector sample were significantly higher than those of the Tumbler and Tenderizer samples (p<0.05). The shear force of the Tenderizer sample was significantly lower than that of the Tumbler and Injector samples (p<0.05). No significant differences, except for color, were observed in the sensory analysis of the samples. Thus, the proper selection of mechanical processing is important to improve the quality characteristics of marinated chicken breast, considering the types of final products.

Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat

  • Zhang, Muhan;Yan, Weili;Wang, Daoying;Xu, Weimin
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1382-1391
    • /
    • 2021
  • Objective: The objective was to evaluate the impact of different forms of iron including myoglobin, hemin, and ferric chloride on the quality of chicken breast meat. Methods: Chicken breast muscles were subjected to 1, 2, 3 mg/mL of FeCl3, myoglobin and hemin treatment respectively, and the production of reactive oxygen species (ROS) and malondialdehyde, meat color, tenderness, water holding capacity and morphology of meat was evaluated. Results: Hemin was found to produce more ROS and induce greater extent of lipid oxidation than myoglobin and ferric chloride. However, it showed that hemin could significantly increase the redness and decrease the lightness of the muscle. Hemin was also shown to be prominent in improving water holding capacity of meat, maintaining a relatively higher level of the immobilized water from low-field nuclear magnetic resonance measurements. Morphology observation by hematoxylin-eosin staining further confirmed the results that hemin preserved the integrity of the muscle. Conclusion: The results indicated that hemin may have economic benefit for the industry based on its advantage in improving water holding capacity and quality of meat.