• Title/Summary/Keyword: chemotaxonomic marker

Search Result 7, Processing Time 0.02 seconds

Bioactive Carotenoid, Fucoxanthin as Chemotaxonomic Marker and Antioxidative Agent from the Marine Bacillariophycean Microalga Hantzschia marina

  • Choi, Jin-Seok;Lee, Won-Kap;Cho, Yong-Jin;Kim, Dong-Soo;Kim, Ae-Ra;Chung, Hae-Young;Jung, Jee-H.;Im, Kwang-Sik;Choi, Won-Chul;Choi, Hong-Dae;Son, Byeng-Wha
    • Natural Product Sciences
    • /
    • v.6 no.3
    • /
    • pp.122-125
    • /
    • 2000
  • Allenic and epoxy carotenoid, fucoxanthin (1) was isolated from the marine bacillariophycean microalga Hantzschia marina and the structure was assigned on the basis of comprehensive spectroscopic analyses. Fucoxanthin was detected only from diatom among three families (green algae, diatom and blue-green algae) of the marine microalgae tested. Fucoxanthin showed free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and peroxynitrite $(ONOO^-)$ with $IC_{50}$ values of $32\;{\mu}M\;and\;60\;{\mu}M$, respectively.

  • PDF

On The Chemical, Botanical, and Chemotaxonomical Evaluation of The Genus Citrus -Part I : Polymethoxyflavones of The Leaf of Citrus deliciosa Ten.-

  • El-Domiaty, Maher M.;Abdel-Aal, Mahmoud M.;El-Shafae, Azza M.
    • Natural Product Sciences
    • /
    • v.2 no.2
    • /
    • pp.106-114
    • /
    • 1996
  • Four polymethoxyfavones were isolated from the leaves of Citrus deliciosa, three of which (nobiletin, 5-O-demethylnobiletin, and tangeritin) are bioactive. The fourth (7,4'-dihydroxy-5,6,8,3'-tetramethoxyflavone) is reported for the first time in the genus Citrus and is a potential chemotaxonomic marker. The structures of these flavones were confirmed by analysing their spectral data and comparison with similar compounds. The previously reported $^{13}C$ NMR assignment of 5-O-demethylnobiletin has been revised on the basis of 2D NMR experiments (HETCOR, COSY, and COLOC). The chemotaxonomic value of the present finding is verified.

  • PDF

The Comparison of Two Strains of Fibrocapsa japonica (Raphidophyceae) in New Zealand and Japan

  • Cho Eun Seob;Rhodes Lesley L.;Kim Hak Gyoon
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.58-65
    • /
    • 1999
  • Fibrocapsa japonica (Raphidophyceae) is regarded as a harmful algal bloom organism in Japanese waters, where it has been linked to fish kills. Fibrocapsa is a common species in New Zealand coastal waters, particularly in the Hauraki Gulf, where it has regularly bloomed in the spring under E1 Nino climate conditions for the past six years. The New Zealand isolate had 1.4 times more total polyunsaturated acids than the Japanese isolate under the same growth conditions, suggesting that eicosapentaenoic acid in particular coold be used as a discriminating chemotaxonomic marker. The molecular probes tested showed no differential binding of the raphidophytes to lectins, but oligonucleotide probes targeted F. japonica ribosomal RNA bound specifically to both isolates. Neither strain was toxic in mouse or neuroblastoma bioassays. There is no evidence that the New Zealand F. japonica isolates investigated to date produce ichthyotoxins.

  • PDF

A chemosystematic investigation of selected Stichococcus-like organisms (Trebouxiophyta)

  • Van, Anh Tu;Karsten, Ulf;Glaser, Karin
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.123-135
    • /
    • 2021
  • The taxonomy of green microalgae relies traditionally on morphological traits but has been rapidly changing since the advent of molecular methods. Stichococcus Nägeli is a cosmopolitan terrestrial algal genus of the class Trebouxiophyceae that has recently been split into seven lineages, which, along with Pseudostichococcus, comprise the Stichococcuslike group; there is a need to further characterize these genera, since they are morphologically enigmatic. Here we used organic osmolytes as chemotaxonomic marker to verify the phylogenetic position of Stichococcus-like strains and were also able to exclude a strain hitherto identified as Gloeotila contorta from this group. Stichococcus-like organisms, including those recently revised, were characterized by the production of the polyol sorbitol and the disaccharide sucrose in high amounts, as is typical of Prasiola-clade algae. The results demonstrate that organic osmolyte chemotaxonomy can support green algal taxonomic designations as fundamental research.

Insights into evolution and speciation in the red alga Bostrychia: 15 years of research

  • Zuccarello, Giuseppe C.;West, John A.
    • ALGAE
    • /
    • v.26 no.1
    • /
    • pp.21-32
    • /
    • 2011
  • Studies of the red algal genus Bostrychia over the last 15 years have made it a model system for many evolutionary processes within red algal species. The combination of newly developed, or first employed methods, in red algal species studies has made Bostrychia a pioneer genus in intraspecific studies. Bostrychia was the first genus in which a mitochondrial marker was used for intraspecific red algal phylogeny, and the first for which a 3-genome phylogeny was undertaken. The genus was the first red alga used to genetically show maternal plastid and mitochondria inheritance, and also to show correlation between cryptic species (genetically divergent intraspecific lineages) and reproductive incompatibility. The chemotaxonomic use, and physiological function of osmolytes, has also been extensively studied in Bostrychia. Our continuous studies of Bostrychia also highlight important aspects in algal species studies. Our worldwide sampling, and resampling in certain areas, show that intensive sampling is needed to accurately assess the genetic diversity and therefore phylogeographic history of algal species, with increased sampling altering evolutionary hypotheses. Our studies have also shown that long-term morphological character stability (stasis) and character convergence can only be correctly assessed with wide geographic sampling of morphological species. While reproductive incompatibility of divergent lineages supports the biological species nature of these lineages, reproductive incompatibility is also seen between isolates with little genetic divergence. It seems that reproductive incompatibility may evolve quickly in red algae and the unique early stages of fertilization (e.g., gametes covered by walls, active movement of spermatium nuclei to the distant egg nucleus), also well investigated in Bostrychia,. may be key to our understanding of this process.

Single & 14-Day Repeated Oral Toxicity Study and Genotoxicological Safety Estimate of Plantamajoside Isolated from Plantago asiatica (차전초(Plantago asiatica)로부터 분리된 Plantamajoside의 단회와 14일 반복투여 독성시험 및 유전독성학적 안전성 평가)

  • Park, Byung-Gyu;Lee, Hyun-Sun;Jung, Sung-Hoon;Koo, Yun-Chang;Hong, Chung-Qui;Lee, Sun-Joo;Lee, Kwang-Won
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The isolated plantamajoside from Plantago asiatica that is often used as a marker compound in chemotaxonomic studies has various bioactivites such as the inhibitions of cyclic AMP phosphodi-esterase and 5-lipoxygenase, microbial growth and inflammation, and currently demands the generation of toxicity data. The purpose of this study was to examine the toxicities of the single and 14 days repeated dose toxicity in Sprague-Dawley rats orally administrated with plantamajoside at dose levels of 0, 500, 1000, and 2000 mg of dried material/kg body weight/day. The results showed that there was no difference in body weight change, food intake, water consumption, or relative organ weight among different dose groups. Also we observed no death and abnormal clinical signs were observed during the experimental period. Between the groups orally administered Plantago asiatica and the control group, there was no statistical significance in hematological test or serum biochemical values. There were no gross findings at final sacrifice. There was no evidence of histopathological alteration mediated by 14 days treatment with Plantago asiatica. These results suggest that no observed adverse effect level (NOAEL) of the oral application was considered to be more than 2000 mg/kg in rats under the conditions employed in this study. Another observation was performed to investigate the safety of Plantago asiatica in respect of genotoxicity. This substance was examined that Salmonella typhimurium reversion assay (Ames test) in strain TA98, TA100, TA1535. In the reverse mutation test, Plantago asiatica did not induce mutagenicity in Samonella typhimurium with and without metabolic activation. These results indicated that Plantago asiatica had no genotoxicity.

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis (색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Yoon, Ji-Hyun;Hur, Sung-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.