• Title/Summary/Keyword: chemosensitivity

Search Result 71, Processing Time 0.025 seconds

Common Variations of DNA Repair Genes are Associated with Response to Platinum-based Chemotherapy in NSCLCs

  • Li, Xian-Dong;Han, Ji-Chang;Zhang, Yi-Jie;Li, Hong-Bing;Wu, Xue-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.145-148
    • /
    • 2013
  • Aim: Individual differences in chemosensitivity and clinical outcome of non-small-cell lung cancer (NSCLC) patients may be induced by host inherited factors. We investigated the impact of XPD Arg156Arg, XPD Asp312Asn, XPD Asp711Asp and XPD Lys751Gln gene polymorphisms on the efficacy of platinum-based chemotherapy in NSCLC patients. Methods: A total of 496 were consecutively selected from the Affiliated Hospital of Nantong University between Jan. 2003 and Nov. 2006, and all patients were followed-up until Nov. 2011. The genotyping of XPD Arg156Arg, XPD Asp312Asn, XPD Asp711Asp and XPD Lys751Gln was conducted by duplex polymerase-chain-reaction with the confronting-two-pair primer methods. Results: Individuals with XPD 312 C/T+T/T and XPD 711 C/T+T/T exhibited poor responses to chemotherapy when compared with the wild-type genotype, with adjusted ORs(95% CI) of 0.67(0.38-0.97) and 0.54(0.35-0.96), respectively. Cox regression showed the median PFS and OS of patients of XPD 312 C/T+T/T genotype and XPD 711 C/T+T/T genotype to be significantly lower than those with wild-type homozygous genotype. Conclusion: We found polymorphisms in XPD to be associated with response to platinum-based chemotherapy in NSCLC, and our findings provide information for therapeutic decisions for individualized therapy.

The Effect of Vernpamil on Chemosensitivity by 5-Fluorouracil and Cisplatin in Human Uterine Cervical Carcinoma Cell Lines (Verapamil의 인체 자궁경부암 세포주에서 5-FU 및 Cisplatin 감수성에 관한 효과)

  • Sang Won Han;Soo Kie Kim;Dong Soo Ch;Sun Ju Choi
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.153-158
    • /
    • 1996
  • Verapamil, a potent calcium channel blocker, has been proved to be one of the modulators to overcome drug resistance in cancer chemotherapy. In the present experiment, the possibility of verapamil as a MDR modulator was investigated by using MTT assay. Sole treatment of verapamil on the HeLa and Caski cervical cancer cell line revealed dose dependent cytotoxicity within a range of tested dose. Combined treatment of verapamil with 5-FU, DDP on two human cervical cancer cell line led to a significant synergistic cytotoxicity. Therefore , these studies showed that verapamil had a possibility to be applicable to cancer chemotherapy in gynecological oncology.

  • PDF

Identification of Proteins Responsible for the Development of Adriamycin Resistance in Human Gastric Cancer Cells Using Comparative Proteomics Analysis

  • Yang, Yi-Xuan;Hu, Huai-Dong;Zhang, Da-Zhi;Ren, Hong
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.853-860
    • /
    • 2007
  • Resistance to anticancer drugs is a major obstacle in the effective treatment of tumors. To understand the mechanisms responsible for multidrug resistance (MDR), a proteomic approach was used to identify proteins that were expressed in different levels by the adriamycinresistant human gastric cancer cell line, SGC7901/ADR, and its parental cell line, SGC7901. Two-dimensional gel electrophoresis (2-DE) and image analysis was used to determine which protein spots were expressed in different levels by the two cell lines. These spots were then partially identified using ESI-Q-TOF mass spectrometry, and the differential expressional levels of the partially identified proteins were then determined by western blot analysis and real-time RT-PCR. Additionally, the association of Nucleophosmin (NPM1), a protein that was highly expressed by SGC7901/ADR, with MDR was analyzed using siRNA. As a result of this study, well-resolved, reproducible 2-DE patterns of SGC7901/ADR and SGC7901 were established, and 16 proteins that may playa role in the development of thermo resistance were identified. Additionally, suppression of NPMl expression was found to enhance adriamycin chemosensitivity in SGC7901/ADR. These results provide a fundamental basis for the elucidation of the molecular mechanism of MDR, which may assist in the treatment of gastric cancer.

Tumor Infiltrating Lymphocytes in Ovarian Cancer

  • Gasparri, Maria Luisa;Attar, Rukset;Palaia, Innocenza;Perniola, Giorgia;Marchetti, Claudia;Donato, Violante Di;Farooqi, Ammad Ahmad;Papadia, Andrea;Panici, Pierluigi Benedetti
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3635-3638
    • /
    • 2015
  • Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker.

Antitumor Activity of Chloroquine in Combination with Cisplatin in Human Gastric Cancer Xenografts

  • Zhang, Hui-Qing;Fang, Nian;Liu, Xiao-Mei;Xiong, Shu-Ping;Liao, Yu-Qian;Jin, Wen-Jian;Song, Rong-Feng;Wan, Yi-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3907-3912
    • /
    • 2015
  • Purpose: To investigate the antitumor activity and mechanism of chloroquine (CQ) in combination with cisplatin (DDP) in nude mice xenografted with gastric cancer SGC7901 cells. Materials and Methods: 35 cases of gastric cancer patients with malignant ascites were enrolled and intraperitoneal cisplatin injection was performed. Ascites were collected before and 5 days after perfusion for assessment of autophagy levels in cancer cells. In addition, 24 tumor-bearing mice were randomly divided into control, DDP, CQ and CQ + DDP groups. Results: In 54.3% (19/35) of patients the treatment was therapeutically effective (OR), 5 days after peritoneal chemotherapy, 13 patients had the decreased ascites Beclin-1 mRNA levels. In 16 patients who had NR, only 2 cases had decreased Beclin-1 (P=0.001). Compared with the control group, the xenograft growth in nude mice in the DDP group was low, and the inhibition rate was 47.6%. In combination with chloroquine, the inhibition rate increased to 84.7% (P<0.01). The LC3-II/I ratio, and Beclin1 and MDR1/P-gp expression were decreased, while caspase 3 protein levels increased (P<0.05). Conclusions: Antitumor ability of cisplatin was associated with autophagy activity and chloroquine can enhance chemosensitivity to cisplatin in gastric cancer xenografts nude mice.

Prevalence and Clinical Significance of Mammalian Target of Rapamycin Phosphorylation (p-mTOR) and Vascular Endothelial Growth Factor (VEGF) in Clear Cell Carcinoma of the Ovary

  • Khemapech, Nipon;Pitchaiprasert, Sunaree;Triratanachat, Surang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6357-6362
    • /
    • 2012
  • Background: To determine the prevalence of mammalian target of rapamycin phosphorylation (p-mTOR) and vascular endothelial growth factor (VEGF) and any correlation with clinical characteristics and prognosis in ovarian clear cell carcinoma patients. Materials and Method: Seventy four paraffin-embedded specimens of such carcinomas frompatients who underwent surgery, received adjuvant chemotherapy and were followed up at King Chulalongkorn Memorial Hospital during January 2002 to December 2008 were stained with rabbit monoclonal IgG p-mTOR and rabbit polyclonal IgG VEGF using immunohistochemical methods. Medical records were reviewed and clinical variables were analysed. Results: The prevalence of positive p-mTOR in ovarian clear cell carcinoma was 87.9% and significantly higher in advance-stage than early-stage patients (100% versus 83.6%, P<0.05). Two-year disease free survival and 2-year overall survival in patients with positive p-mTOR expression were 60% and 69.2% with no differences from patients with negative p-mTOR expression (p>0.05). The prevalence of VEGF expression was 63.5% and significantly higher in chemo-sensitive than chemo-resistant patients (70.7% versus 37.5%, P<0.05). Two-year disease free survival and 2-year overall survival in patients with VEGF expression were 72.3% and 83% respectively which were significantly different from patients with negative VEGF expression (p<0.05). Conclusions: p-mTOR expression in ovarian clear cell carcinoma was significantly correlated with the stage of disease. VEGF expression was significantly correlated with chemosensitivity, and survival. Further studies of related targeted therapy might be promising.

Overcoming 5-Fu Resistance of Colon Cells through Inhibition of Glut1 by the Specific Inhibitor WZB117

  • Liu, Wei;Fang, Yong;Wang, Xiao-Tong;Liu, Ju;Dan, Xing;Sun, Lu-Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7037-7041
    • /
    • 2014
  • Background: 5-Fluorouracil (5-FU) is the most commonly used drug in colon cancer therapy. However, despite impressive clinical responses initially, development of drug resistance to 5-Fu in human tumor cells is the primary cause of failure of chemotherapy. In this study, we established a 5-Fu-resistant human colon cancer cell line for comparative chemosensitivity studies. Materials and Methods: Real time PCR and Western blotting were used to determine gene expression levels. Cell viability was measured by MTT assay. Glucose uptake was assess using an Amplex Red Glucose/Glucose Oxidase assay kit. Results: We found that 5-Fu resistance was associated with the overexpression of Glut1 in colon cancer cells. 5-Fu treatment at low toxic concentration induced Glut1 expression. At the same time, upregulation of Glut1 was detected in 5-Fu resistant cells when compared with their parental cells. Importantly, inhibition of Glut1 by a specific inhibitor, WZB117, significantly increased the sensitivity of 5-Fu resistant cells to the drug. Conclusions: This study provides novel information for the future development of targeted therapies for the treatment of chemo-resistant colon cancer patients. In particular it demonstrated that Glut1 inhibitors such as WZB117 may be considered an additional treatment options for patients with 5-Fu resistant colon cancers.

FBW7 Upregulation Enhances Cisplatin Cytotoxicity in Non-small Cell Lung Cancer Cells

  • Yu, Hao-Gang;Wei, Wei;Xia, Li-Hong;Han, Wei-Li;Zhao, Peng;Wu, Sheng-Jun;Li, Wei-Dong;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6321-6326
    • /
    • 2013
  • Introduction: Lung cancer is extremely harmful to human health and has one of the highest worldwide incidences of all malignant tumors. Approximately 80% of lung cancers are classified as non-small cell lung cancers (NSCLCs). Cisplatin-based multidrug chemotherapy regimen is standard for such lesions, but drug resistance is an increasing problem. F-box/WD repeat-containing protein 7 (FBW7) is a member of the F-box protein family that regulates cell cycle progression, and cell growth and differentiation. FBW7 also functions as a tumor suppressor. Methods: We used cell viability assays, Western blotting, and immunofluorescence combined with siRNA interference or plasmid transfection to investigate the underlying mechanism of cisplatin resistance in NSCLC cells. Results: We found that FBW7 upregulation significantly increased cisplatin chemosensitivity and that cells expressing low levels of FBW7, such as NCI-H1299 cells, have a mesenchymal phenotype. Furthermore, siRNA-mediated silencing or plasmid-mediated upregulation of FBW7 resulted in altered epithelial-mesenchymal transition (EMT) patterns in NSCLC cells. These data support a role for FBW7 in regulating the EMT in NSCLC cells. Conclusion: FBW7 is a potential drug target for combating drug resistance and regulating the EMT in NSCLC cells.

Down-regulation of miRNA-452 is Associated with Adriamycin-resistance in Breast Cancer Cells

  • Hu, Qing;Gong, Jian-Ping;Li, Jian;Zhong, Shan-Liang;Chen, Wei-Xian;Zhang, Jun-Ying;Ma, Teng-Fei;Ji, Hao;Lv, Meng-Meng;Zhao, Jian-Hua;Tang, Jin-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5137-5142
    • /
    • 2014
  • Adriamycin (ADR) is an important chemotherapeutic agent frequently used in treatment of breast cancer. However, resistance to ADR results in treatment failure in many patients. Recent studies have indicated that microRNAs (miRNAs) may play an important role in such drug-resistance. In the present study, microRNA-452 (miR-452) was found to be significantly down-regulated in adriamycin-resistant MCF-7 cells (MCF-7/ADR) compared with the parental MCF-7 cells by miRNA microarray and real-time quantitative PCR (RT-qPCR). MiR-452 mimics and inhibitors partially changed the adriamycin-resistance of breast cancer cells, as also confirmed by apoptosis assay. In exploring the potential mechanisms of miR-452 in the adriamycin-resistance of breast cancer cells, bioinformatics analysis, RT-qPCR and Western blotting showed that dysregulation of miR-452 played an important role in the acquired adriamycin-resistance of breast cancer, maybe at least in part via targeting insulin-like growth factor-1 receptor (IGF-1R).

Identification of a Cancer Stem-like Population in the Lewis Lung Cancer Cell Line

  • Zhang, An-Mei;Fan, Ye;Yao, Quan;Ma, Hu;Lin, Sheng;Zhu, Cong-Hui;Wang, Xin-Xin;Liu, Jia;Zhu, Bo;Sun, Jian-Guo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.761-766
    • /
    • 2012
  • Objective: Although various human cancer stem cells (CSCs) have been defined, their applications are restricted to immunocompromised models. Developing a novel CSC model which could be used in immunocompetent or transgenic mice is essential for further understanding of the biomolecular characteristics of tumor stem cells. Therefore, in this study, we analyzed murine lung cancer cells for the presence of CSCs. Methods: Side population (SP) cells were isolated by fluorescence activated cell sorting, followed by serum-free medium (SFM) culture, using Lewis lung carcinoma cell (LLC) line. The self-renewal, differentiated progeny, chemosensitivity, and tumorigenic properties in SP and non-SP cells were investigated through in vitro culture and in vivo serial transplantation. Differential expression profiles of stem cell markers were examined by RT-PCR. Results: The SP cell fraction comprised 1.1% of the total LLC population. SP cells were available to grow in SFM, and had significantly enhanced capacity for cell proliferation and colony formation. They were also more resistant to cisplatin in comparison to non-SP cells, and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA expression of Oct-4, ABCG2, and CD44. Conclusion: We identified SP cells from a murine lung carcinoma, which possess well-known characteristics of CSCs. Our study established a useful model that should allow investigation of the biological features and pharmacosensitivity of lung CSCs, both in vitro and in syngeneic immunocompetent or transgenic/knockout mice.