• 제목/요약/키워드: chemically reacting flow

검색결과 22건 처리시간 0.024초

Upwind 방법을 이용한 무딘물체 주위의 화학적 비평형 비점성 유동장의 수치 해석 (Numerical Analysis of Nonequilibrium Chemically Reacting Inviscid flow over Blunt-bodies Using Upwind Method)

  • 서정일;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.99-105
    • /
    • 1997
  • A finite-difference method based on conservative supra characteristic method type upwind flux difference splitting has been developed to study the nonequilibrium chemically reacting inviscid flow. For nonequilibrium air, NS-1 species equations were strongly coupled with flowfield equations through convection and species production terms. Inviscid nonequilibrium chemically reacting air mixture flows over Blunt-body were solved to demonstrate the capability of the current method. At low altitude flight conditions the nonequilibrium air models predicted almost the same temperature, density and pressure behind the shock as equilibrium flow: however, at high altitudes they showed substantial differences due to nonequilibrium chemistry effect. The new nonequilibrium chemically reacting upwind flux difference splitting mettled can be extended to viscous flow and multi-dimensional flow conditions.

  • PDF

고 고도에서의 화학적 변화를 수반하는 기체 유동에 대한 수치해석적 연구 (A numerical study on the chemically reacting flow at highly altitude)

  • 이진호;김현우;원성연
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.202-214
    • /
    • 2001
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study quasi one-dimensional nozzle flow and axisymmetric sphere-cone($5^{\circ}$) flow for the perfect gas, the equilibrium and the nonequilibrium chemically reacting hypersonic flow. The effective gamma(${ \tilde{\gamma}}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The influences of the various altitude(30km, 50km) at Mach number(15.0, 20.0) were investigated. The equilibrium shock position was located farthest downstream when compared with those of perfect gas in a quasi one-dimensional nozzle. The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock.

  • PDF

예조건화 기법을 이용한 층류 및 난류 화학반응 유동장 해석 (Numerical Simulation of Chemically Reacting Laminar and Thrbulent Flowfields Using Preconditioning Scheme)

  • 김교순;최윤호;이병옥;송봉하
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.320-327
    • /
    • 2006
  • The computations of chemically reacting laminar and turbulent flows are performed using the preconditioned Navier-Stokes solver coupled with turbulent transport and multi-species equations. A low-Reynolds number $k-\varepsilon$ turbulence model proposed by Chien is used. The presence of the turbulent kinetic energy tenn in the momentum equation can materially affect the overall stability of the fluids-turbulence system. Because of this coupling effect, a fully coupled formulation is desirable and this approach is taken in the present study. Choi and Merkle's preconditioning technique is used to overcome the convergence difficulties occurred at low speed flows. The numerical scheme used for the present study is based on the implicit upwind ADI algorithm and is validated through the comparisons of computational and experimental results for laminar methane-air diffusion flame and $ H_2/O_2$ reacting turbulent shear flow. Preconditioning formulation shows better convergence characteristics than that of non-preconditioned system by approximately five times as much.

3단형 과학로켓 탑재부 극초음속 공력특성 연구 (Numerical Study on Hypersonic Characteristics of the KSR-Ⅲ Payload)

  • 이장연
    • 한국전산유체공학회지
    • /
    • 제6권2호
    • /
    • pp.32-39
    • /
    • 2001
  • Hypersonic analysis on the KSR-Ⅲ payload configuration has been performed using an axisymmetric Navier-Stokes code. A numerical code based on the Harten and Yee's upwind TVD scheme with simplified curve fits in the chemically reacting equilibrium air was developed. The carbuncle phenomenon on detached shock in front of the payload is controlled by using pressure gradients to tune the dissipation. Chemically reacting equilibrium computations for the reentry flight conditions of Mach No. 10.2, 8, 4.9 are presented and compared with the results of calorically perfect gas.

  • PDF

A COMPUTATIONAL ANALYSIS OF FINITE RATE CHEMICALLY REACTING FLOW BY USING UPWIND N-S METHOD

  • Seo J. I.;Kwon C. O.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.166-171
    • /
    • 2000
  • A two-dimensional/axisymmetric CSCM upwind flux difference splitting Wavier-Stokes method has been developed to study the finite rate chemically react-ing invisicd and viscous hypersonic flows over blunt-body. A upwind method was chosen due to its robustness in capturing the strong bow shock waves. For the nonequilibrium chemically reacting air, NS-I species conservation equations were strongly coupled with flowfield equations through convection and species production terms. The nonequilibrium wall pressure and heat transfer rate distributions along the vehicle were compared with those from equilibrium and perfect gas calculations. The nonequilibrium species distribution shows the reduced concentrations of O and N species when compared with equilibrium species distribution. The solutions resolved strong bow shock waves md heat transfer rate very accurately when compared with central difference schemes.

  • PDF

초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석 (Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator)

  • 최정열;정인석;이수갑
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석 (A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method)

  • 권창오;김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.123-141
    • /
    • 1996
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone(5°) geometry. The effective gamma(γ), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about 3 ∼ 5 percent. The heat transfer coefficient were also calculated. The results were compared with VSL results in order to validate the current numerical analysis. The results from current method were compared well VSL results ; however, not well at near nose. The proper boundary condition and grid system will be studied to improve the solution quality.

  • PDF

Upwind Navier-Stokes 방정식을 이용한 무딘 물체 주위의 유동장 해석 (A Numerical Analysis of High Speed Flow over Blunt Body Using Upwind Navier-Stokes Method)

  • 권창오;김상덕;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.203-212
    • /
    • 1995
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study the perfect gas and the equilibrium chemically reacting hypersonic flow over an axisymmetric sphere-cone($5^{\circ}$) geometry. The effective gamma($\bar{r}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The test case condition was at altitude(30Km) and Mach number(15). The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock. The pressure difference between perfect gas and equilibrium gas was about $3\sim5$ percent. The skin friction coefficient and heat transfer coefficient were also calculated.

  • PDF

SORET AND DUFOUR EFFECTS ON RADIATIVE HYDROMAGNETIC FLOW OF A CHEMICALLY REACTING FLUID OVER AN EXPONENTIALLY ACCELERATED INCLINED POROUS PLATE IN PRESENCE OF HEAT ABSORPTION AND VISCOUS DISSIPATION

  • VENKATESWARLU, M.;BHASKAR, P.;LAKSHMI, D. VENKATA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권3호
    • /
    • pp.157-178
    • /
    • 2019
  • The present correspondence is conveyed on to consider the fascinating and novel characteristics of radiative hydromagnetic convective flow of a chemically reacting fluid over an exponentially accelerated inclined porous plate. Exact solutions for the fluid velocity, temperature and species concentration, under Boussinesq approximation, are obtained in closed form by the two term perturbation technique. The interesting parts of thermal dispersing outcomes are accounted in this correspondence. Graphical evaluation is appeared to depict the trademark direct of introduced parameters on non dimensional velocity, temperature and concentration profiles. Also, the numerical assortment for skin friction coefficient, Nusselt number and Sherwood number is examined through tables. The certification of current examination is confirmed by making an examination with past revelations available in composing, which sets a benchmark for utilization of computational approach.

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF