• Title/Summary/Keyword: chemically bonded

Search Result 68, Processing Time 0.026 seconds

A Review of Nanostructured Ca-aluminate Based Biomaterials within Odontology and Orthopedics

  • Hermansson, Leif
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.95-107
    • /
    • 2018
  • This presentation will give an overview of Ca-aluminate based biomaterials and their proposed use within the field of nanostructured biomaterials. The paper describes typical features of Ca-aluminate materials with regard to technology, chemistry, biocompatibility including hemocompatibility and bioactivity, and developed microstructure. Special focus will be on the developed microstructure, which is in the nanosize range. Application possibilities within odontology, orthopedics, and drug delivery are presented. The nanostructure including pore size below 5 nm in these structures opens up this material for some use in specific dental-related applications in which antibacterial and bacteriostatic aspects are of importance, and as thin coating on implants within dental and orthopaedic applications. Nanosize porosity is essential in drug delivery systems for controlled release of medicaments. The priority field for Ca-aluminate biomaterials is implant materials, which use minimally-invasive techniques to offer in vivo, on-site developed biomaterials.

Fabrication of a CNT Filter for a Microdialysis Chip

  • An, Yun-Ho;Song, Si-Mon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 2006
  • This paper describes the fabrication methods of a carbon nanotube (CNT) filter and a microdialysis chip. A CNT filter can help perform dialysis on a microfluidic chip. In this study, a membrane type of a CNT filter is fabricated and located in a microfluidic chip. The filter plays a role of a dialysis membrane in a microfluidic chip. In the fabrication process of a CNT filter, individual CNTs are entangled each other by amide bonding that is catalyzed by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The chemically treated CNTs are shaped to form a CNT filter using a PDMS film-mold and vacuum filtering. Then, the CNT filter is sandwiched between PDMS substrates, and they are bonded together using a thin layer of PDMS prepolymer as adhesive. The PDMS substrates are fabricated to have a microchannel by standard photo-lithography technique.

Epitaxial Growth of $\beta$-SiC Thin Films on Si(100) Substrate without a Carburized Buffer Layer

  • Wook Bahng;Kim, Hyeong-Joon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.163-168
    • /
    • 1997
  • Most of heteroepitaxial $\beta$-SiC thin films have been successfully grown on Si(100) adapting a carburizing process, by which a few atomic layers of substrate surface is chemically converted to very thin SiC layer using hydrocarbon gas sources. Using an organo-silicon precursor, bis-trimethylsilymethane (BTMSM, [$C_7H_{20}Si_2$]), heteropitaxial $\beta$-SiC thin films were successfully grown directy on Si substrate without a carburized buffer layer. The defect density of the $\beta$-SiC thin films deposited without a carburized layer was as low as that of $\beta$-SiC films deposited on carburized buffer layer. In addition, void density was also reduced by the formation of self-buffer layer using BTMSM instead of carburized buffer layer. It seems to be mainly due to the characteristic bonding structure of BTMSM, in which Si-C was bonded alternately and tetrahedrally (SiC$_4$).

  • PDF

Characteristics of Ni-based Alloy Bond in Diamond Tool Using Vacuum Brazing Method

  • An, Sang-Jae;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1130-1131
    • /
    • 2006
  • We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.

  • PDF

Strength Behaviour and Hardening Mechanism of Chemical Bonded Fly Ash Mortar (화학적 결합에 의한 Fly ash 경화체의 강도 발현 메카니즘)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.373-376
    • /
    • 2005
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_{2}$ and $Al_{2}O_{3}$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^{-}$ through alkali activators. We used alkali activators for supplying it with additional $OH^{-}$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time.

  • PDF

THE EFFECT OF LIGHT CURED GLASS IONOMER CEMENT ON THE SHEAR BOND STRENGTH OF ORTHODONTIC BRACKETS (광중합형 글래스 아이오노머 시멘트 교정용 브라켓의 전단결합강도에 미치는 영향)

  • Kim, Cheol;Yoon, Young-Jooh;Kim, Kwng-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.327-334
    • /
    • 1997
  • The purpose of this study was to evaluate clinical applicability of light cured glass ionomer cement as a othodontic adhesive. The metal brackets and plastic brackets were bonded with light cured glass ionomer cement(Fuji Ortho $LS^{(R)}$) after polishing with a slurry of pumice, surface conditioning with 10% polyacrylic acid and chemically cured resin(Mono-$Lok2^{(R)}$) after acid etching with 38% phosphoric acid on the extracted human bicuspids. The shear bond strength was tested with a universal testing machine(HGS-100A, Shimadzu Co., Japan) after storage in normal saline at $37^{\circ}C$ or 24 hours and 48 hours. The results were as follows: 1. The shear bond strength of light cured glass ionomer cement group polished with a slurry of pumice was significantly lower than that of chemically cured resin group(P<0.01). 2. The shear bond strength of light cured glass ionomer cement group conditioned with 10% polyacrylic acid was significantly lower than that of chemically cured resin group(P<0.01). 3. The shear bond strength of light cued glass ionorner cement group conditioned with 10% polyacrylic acid was slightly higher than that of light cured glass ionomer cement group polished with a slurry of pumice, but there was no significant difference(P>0.05). 4. There was no significant difference between metal bracket group and plastic bracket group irrelevant off enamel conditioning(P>005). In summary, although the shear bond strength of light cured glass lionomer cement was lower than that of chemically cured resin, it night be clinically applicable.

  • PDF

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

Development of medium resolution cross-dispersed silicon grisms in the Near Infrared ; Direct Silicon wafer bonding technique

  • Jeong, Hyeon-Ju;Wang, Wei-Song;Gully-Santiago, Michael;Deen, Casey;Pak, Soo-Jong;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.125.2-125.2
    • /
    • 2011
  • We are developing medium resolution cross-dispersed silicon grisms in the near IR region ($1.45{\sim}5.2{\mu}m$). The grisms will be installed in MIMIR, a multifunction instrument at the Lowel Observatory, USA. The two devices are designed to cover H and K band and L and M band simultaneously. Our goal is to make grism with R=3000 at 1.2 arcsec slit. The Silicon has high refractive index (n=3.4 at $1.5{\mu}m$) which enhances the resolving power by up to 5 times when compared to conventional material such as BK-7 (n=1.5 at 1.5 ${\mu}m$). The bonded grisms will be installed in a filter wheel for the uses switch from spectroscopic mode to imaging mode easily. Our device is compact and light weighted while it provides a decent resolving power. We produce monolithic grisms using e-beam lithography at the NASA JPL and chemically etching the grooves on the silicon prisms. Moreover, the main-disperser and cross-disperser will be contacted together by direct Si-Si bonding technique and eventually turn into one piece. The bonded pair offers more stability in terms of the layout of the spectrum and removes the Fresnel loss at the intersection of two grisms. We report on the proper wafer bonding steps through this research, and inspected the bonding quality thermally, optically and mechanically.

  • PDF

Strength Development and Hardening Mechanism of Alkali Activated Fly Ash Mortar (알카리 활성화에 의한 플라이애쉬 모르타르의 강도 발현 및 경화 메커니즘)

  • Jo, Byung-Wan;Park, Min-Seok;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.449-458
    • /
    • 2006
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the cement. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_2\;and\;Al_2O_3$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^-$ through alkali activators. Alkali activators were used for supplying it with additional $OH^-$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also, according to scanning electron microscopy and X-Ray diffraction, the main reaction product in the alkali activated fly ash mortar is Zeolite of $Na_6-(AlO_2)_6-(SiO_2)_{10}-12H_2O$ type.

The effect of retention grooves in Acrylic resin tooth denture base bond (합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF