• Title/Summary/Keyword: chemical transport reaction method

Search Result 59, Processing Time 0.023 seconds

Dye-Sensitized Solar Cell Based on TiO2-Graphene Composite Electrodes (TiO2와 Graphene 혼합물을 전극으로 사용한 염료감응형 태양전지특성 연구)

  • Battumur, T.;Yang, Wooseung;Ambade, S.B.;Lee, Soo-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.177-181
    • /
    • 2012
  • Dye-sensitized solar cells(DSSCs) based on $TiO_2$ film photo anode incorporated with different amount of grapheme nanosheet(GNS) are fabricated and their photovoltaic performance are investigated. The $TiO_2$-GNS composite electrode has been prepared by a direct mixing method. The DSSC performance of this composite electrode was measured using N3 dye as a sensitizer. The performance of DSSCs using the $TiO_2$-GNS composite electrodes is dependent on the GNS loading in the electrodes. The results show that the DSSCs incorporating 0.01 wt% GNS in $TiO_2$photo anode demonstrates a maximum power conversion efficiency of 5.73%, 26% higher than that without GNS. The performance improvement is ascribed to increased N3 dye adsorption, the reduction of electron recombination and back transport reaction as well as enhancement of electron transport with the introduction of GNS. The presence of both $TiO_2$(anatase) and GNS has been confirmed by FieldEmission Scanning Electron Microscopy(FE-SEM). The decrease in recombination due to GNS in DSSCs has been investigated by the Electrochemical Impedance Spectroscopy.

Hall Effect of FeSi$_2$ Thin Film by Magnetic Field (FeSi$_2$박막 흘 효과의 자계의존성)

  • 이우선;김형곤;김남오;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.234-237
    • /
    • 2001
  • FeSi$_2$/Si Layer were grown using FeSi$_2$, Si wafer by the chemical transport reaction method. The directoptical energy gap was found to be 0.871ev at 300 K. The Hall effect is a physical effect arising in matter carrying electric current in the presence of a magnetic field. The effect is named after the American physicist E. H. Hall, who discovered it in 1879. In this paper, we study electrical properties of FeSi$_2$/Si layer And then we measured Hall coefficient Hall mobility, carrier density and Hall voltage according to variation magnetic field and temperature, Because of important Part for it application Various phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

Hall Effect of $FeSi_2$ Thin Film by Temperature ($FeSi_2$박막 홀 효과의 온도의존성)

  • 이우선;김형곤;김남오;정헌상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.230-233
    • /
    • 2001
  • FeSi$_2$ Layer were grown using FeSi$_2$, Si wafer by the chemical transport reaction method. The directoptical energy gap was found to be 0.87leV at 300 K. The Hall effect is a Physical effect arising in matter carrying electric current in the presence of a magnetic field. The effect is named after the American physicist E.H. Hall, who discovered it in 1879. In this paper, we study electrical properties of FeSi$_2$/Si layer. And then we measured Hall coefficient Hall mobility, carrier density and Hall voltage according to variation magnetic field and temperature, Because of important part for it application various phase of silicide is formed at the metal-Si interface when transition metal contacts to Si. Silicides belong to metallic or semiconducting according to their electrical and optical properties. Metallic silicides are used as gate electrodes or interconnections in VLSI devices. Semiconducting silicides can be used as a new material for IR detectors because of their narrow energy band gap.

  • PDF

Combustion Characteristics and Soot Formation in a Jet Diffusion Flame (제트 확산화염의 연소특성과 매연생성에 관한 연구)

  • 이교우;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2712-2723
    • /
    • 1994
  • Numerical simulation of an axisymmetric ethylene-air jet diffusion flame has been carried out in order to investigate flame dynamics and soot formation. The model solves the time-dependent Navier-Stokes equations and includes models for soot formation, chemical reaction, molecular diffusion, thermal conduction, and radiation. Numerically FCT(Flux Corrected Transport) and DOM(Discrete Ordinate Method) methos are used for convection and radiation trasport respectively. Simulation was conducted for a 5 cm/sec fuel jet flowing into a coflowing air stream. The maximum flame temperature was found to be approximately 2100 K, and was located at an axial position of approximately 5 cm from the base of the flame. The maximum soot volume fraction was about $7{\times}10^{-7}$, and was located within the high temperature region where the fuel mole fraction ranges from 0.01 to 0.1. The buoyancy-driven low-frequency(12~13 Hz) structures convected along the outer region of the flame were captured. In case without radiation trasport, the maximum temperature was higher by 150 K than in case with radiation. Also the maximum soot volume fraction reached about $8{\times}10^{-6}$. As the the hydrocarbon fuel forms many soot particles, the radiation transport becomes to play a more important role.

A Study on the Computational Simulation of Cyclic Voltammetry using Semi-infinite Diffusion Model (반무한 확산모델을 이용한 순환전위법의 전산모사에 관한 연구)

  • Cho, Ha-Na;Kim, Tae-Yong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.138-144
    • /
    • 2011
  • The transport phenomena of electron and ion around the electrode have been analyzed, herein the computational program to simulate the electrochemical signal of cyclic voltammetry has been implemented. For the dominant mass-transfer system, the governing equation and its boundary conditions are confined to the semi-infinite diffusion model and the reversible reaction at the electrode. In order to obtain the numerical solutions of cyclic voltammetry, MATLAB was used for the explicit finite difference method. Experimental results from the cyclic voltammetry of electrochemical system(10 mM $K_3Fe(CN)_6$ and 0.1M KCl) upon the ITO glass substrate were compared with the numerical solutions. Present program explains the experimental results fairly well, where they approached the simulated ones closely with deceasing the scan rate. Furthermore, the effects of electrode area, electrochemical reaction constants and transfering coefficients in the cyclic voltammetry were discussed quantitatively.

Optical Properties of α-In2S3:Co2+ Single Crystal (α-In2S3:Co2+ 단결정의 광학적 특성에 관한 연구)

  • Park, Kwang-Ho;Hyun, Seung-Cheol;Jeong, Jin;Oh, Seok-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1057-1062
    • /
    • 2008
  • The ${\alpha}-In_2S_3:Co^{2+}$ single crystal with a good quality and stabilized property were gained successfully by the CTR(Chemical Transport Reaction)method. XRD analysis showed that the grown single crystals were cubic structure. The optical absorption spectra of ${\alpha}-In_2S_3:Co^{2+}$ single crystal showed impurity absorption peaks due to cobalt impurity. These impurity absorption pesks were assigned to the ligand transition between the split energy levels of $Co^{2+}$ ions sited in $T_d$ symmetry of these semiconductor host lattice.

Optical Properties of $CdAl_2S_4 : Co_{2+}$ Single Crystal ($CdAl_2S_4 : Co_{2+}$ 단결정의 광학적 특성)

  • Kim, Hyung-Gon;Kim, Nam-Oh;Son, Kyeong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.382-387
    • /
    • 2000
  • The $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$ single crystals were grown by the chemical transport reaction method using iodine as a transport agent. The $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$single crystals were crystallized into a defect chalcopyrite structure. The optical energy gap of the $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$ single crystals was found to be 3.377 eV and 2.924 eV, respectively, at 300 K. Blue emission with peaks in 456nm~466nm at 280K was observed in the $CdAl_2S_4$ single crystal. Optical absorption and emission peaks due to impurities in the $CdAl_2S_4 Co^{2+}$ single crystal were observed and described as originating from the electron transition between energy levels of the $Co^{2+} ion sited at the Td symmetry point.

  • PDF

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Optical Properties of Undoped and Co-doped $Cd_4SnSe_6$ Single Crystals ($Cd_4SnSe_6$$Cd_4SnSe_6 :Co^{2+}$ 단결정의 광학적 특성)

  • 한석룡;김화택
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.486-490
    • /
    • 1993
  • Cd4SnSea6 & Cd4SnSe6 : Co2+ single crystals were grown by the chemical transport reaction (CTR) method. The grown single crystlas crrystallize in the monoclinic structrue and have the direct band gaps. The energy gaps of them are 1.68eV for Cd4SnSea6 & Cd4SnSe6 : Co2+ at 293K. The impurity opticla absorption peaks due to cobalt dped with impurity appear at 4879cm-1, 5392cm-1 and 6247 com-1, and are attributed to the electron transitions between the split energy levels of Co2+ ion sited at Td symmetry of Cd4SnSe6 single crystal.

  • PDF

Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

  • Ni, Meng
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.53-78
    • /
    • 2013
  • Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.