• Title/Summary/Keyword: chemical surfactant

Search Result 746, Processing Time 0.026 seconds

Viscoelastic behavior of aqueous surfactant micellar solutions

  • Toshiyuki Shikata;Mamoru Shiokawa;Shyuji Itatani;Imai, Shin-ichiro
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • A cationic surfactant, cetyltrimethylammonium $\rho$-toluenesufonate (CTA$\rho$TS), forms long threadlike micelles in aqueous solution. The threadlike micelles make concentrated entanglement networks, so that the solution shows pronounced viscoelastic behavior as concentrated polymer systems do. However, a mechanism for a process responsible for the longest relaxation time of the threadlike micellar system is different from that of semi-dilute to concentrated polymer systems. The threadlike micellar system exhibits unique viscoelasticity described by a Maxwell model. The longest relaxation time of the threadlike micellar system is not a function of the concentration of CTA$\rho$TS, but changes with that of $\rho$-toluenesufonate ($\rho$$TS^{-}$) ions in the bulk aqueous phase supplied by adding sodium $\rho$-toluenesulfonate (NapTS). The rates of molecular motions in the threadlike micelles are not influenced by the concentration of $\rho$$TS^{-}$ anions, therefore, molecular motions in the threadlike micelles (micro-dynamics) are independent of the longest relaxation mechanism (macro-dynamics). A nonionic surfactant, oleyldimethylamineoxide (ODAO), forms long threadlike micelles in aqueous solution without any additives. The aqueous threadlike micellar system of ODAO also shows Maxwell type viscoelastic behavior. However, the relaxation mechanism for the longest relaxation process in the system should be different from that in the threadlike micellar systems of CTA$\rho$TS, since the system of ODAO does not contain additive anions. Because increase in the average degree of protonation of head groups of ODAO molecules in micelles due to adding hydrogen bromide causes the relaxation time remarkably longer, changes in micro-structure and micro-dynamics in the threadlike micelle are closely related to macro-dynamics in contrast with the threadlike micellar system of CTA$\rho$TS.

Binding of Vaccine and Poly(DL-lactide-co-glycolide) Nanoparticle Modified with Anionic Surfactant (음이온성 유화제로 수식된 폴리락티드/글리코리드 공중합체 나노 입자와 백신의 결합성)

  • Choi, Min-Soo;Park, Eun-Seok;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • Recently, studies on intranasal mucosa delivery of influenza vaccine have been actively developed because of lack of pain and ease of administration. We studied on preparation of nanoparticle delivery system using biodegradable polymer as a poly(DL-lactide-co-glycolide) (PLGA) and their binding characteristics with vaccine. Three kinds of PLGA nanoparticles were prepared by spontaneous emulsification solvent diffusion (SESD) method using sodium dodecyl sulfate and sodium laurate as an anionic surfactant and Lutrol F68 (polyethylene glycol-block-polypropylene glycol copolymer) as a nonionic surfactant. The 5-aminofluorescein labeled vaccine was coated on the surface of nanoparticles by ionic complex. The complexes between vaccine and nanoparticles were confirmed by change of the size. After vaccine coating on the surface of anionic nanoparticles, particle size was increased from 174 to 1,040 nm. However the size of nonionic nanoparticles was not more increased than size of anionic nanoparticles. The amount of coated vaccine on the surface of PLGA nanoparticles was $14.32\;{\mu}g/mg$ with sodium dodecyl sulfate, $12.41\;{\mu}g/mg$ with sodium laurate, and $9.47{\mu}g/mg$ with Lutrol F68, respectively. In conclusion, prepared nanoparticles in this study is possible to use as a virus-like nanoparticles and it could be accept in the field of influenza vaccine delivery system.

Thermodynamics on the Mixed Micellar Formation of Dimethyldodecylamine Oxide in Water/n-Propanol (Dimethyldodecylamine Oxide 의 물/n-프로판올 용매에서 혼합미셸 형성에 관한 열역학적 연구)

  • Lee Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.562-569
    • /
    • 1993
  • The pseudophase separation model is used to describe the effects of pH and n-propanol on the mixed micellar formation of protonated and unprotonated dimethyldodecylamine oxides. Dimethyl-dodecylamine oxide surfactant molecules may exist in aqueous solution in either nonionic (unprotonated) or cationic (protonated) form, and they can be modeled thermodynamically as a binary mixture of cationic and nonionic surfactants. The composition of the binary mixture is varied by adjusting the solution pH. And activities, micellar compositions, and monomeric compositions of two surfactant species can be calculated directly from the experimental titration data by applying pseudophase separation model to the micellar system of DDAO in water/n-propanol. The critical micellar concentrations and the p$K_a$ values of the binary mixture systems are dependent on the micellar composition of the protonated cationic surfactant (X); especially they show the minimum phenomena when they are plotted against the micellar composition of the protonated cationic surfactant (X). The critical micellar concentration of the binary mixed DDAO system is generally decreased when n-propanol is added to the binary mixture system, and the degree of decrease is dependent on the concentration of n-propanol.

  • PDF

Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature

  • Ghosh, Aniruddha;Saha, Rumpa;Ghosh, Sumanta K.;Mukherjee, Kakali;Saha, Bidyut
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.703-711
    • /
    • 2013
  • In the present investigation, kinetic studies of oxidation of formic acid with and without catalyst and promoter in aqueous acid media were studied under the pseudo-first order conditions [formic acid]T ${\gg}[Cr(VI)]_T$ at room temperature. In the 1,10-phenanthroline (phen) promoted path, the cationic Cr(VI) phen complex is the main active oxidant species undergoes a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition through several steps leading to the products $CO_2$ and $H_2$ along with the Cr(III) phen complex. The anionic surfactant (i.e., sodium dodecyl sulfate, SDS) and neutral surfactant (i.e., Triton X-100, TX-100) act as catalyst and the reaction undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Whereas the cationic surfactant (i.e., N-cetyl pyridinium chloride, CPC) acts as an inhibitor restricts the reaction to aqueous phase. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. The neutral surfactant TX-100 has been observed as the suitable micellar catalyst for the phen promoted chromic acid oxidation of formic acid.

Synthesis and Optical Properties of the Semiconductor Lead Sulfide Nanobelts

  • Yang, Xiao hong;Wu, Qing Sheng;Ding, Ya Ping;Liu, Jin ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.377-380
    • /
    • 2006
  • The semiconductor PbS nanobelts (width 50-120 nm and length over 3 $\mu$m) were self-assembled in a simple reverse micelle solvent system containig the surfactant of polyoxyethylene (9) dodecy ether $(C_{12}E_9)$. The nanobelts synthesized were found to possess cube galena poly-crystal structure with high purity when analyzed by ED and X-ray diffraction. Significant “blue shift” from bulk material was observed on the PbS nanobelts using photoluminescence and UV-Vis spectroscopy. A mechanism involving the possible formation of nanobelts based on surfactant template was also proposed.

Synthesis of Poly(glycerol-succinic acid)-dithiocarbamate and Poly(glycerol-succinic acid)-1,3,4-thiadiazole Dendrimers and Their Use as Anti-Wear Oil Additives

  • Kim, Yeong-Joon;Hoang, Quoc-Viet;Kim, Sung-Ki;Cho, Chang-Yong;Kim, Jeongkwon;Chung, Keun-Woo;Kim, Young-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2044-2050
    • /
    • 2013
  • A series of poly(glycerol-succinic acid) dithiocarbamate and 1,3,4-thiadiazole dendrimers, which have potential as anti-wear oil additives, were synthesized. Their anti-wear properties in three different oils (100N, DB-51, and soybean) were evaluated using a four-ball wear tester. The results indicated that thiocarbamate dendrimers have moderate anti-wear properties in DB-51 oil, and 1,3,4-thiadiazole dendrimers exhibited good anti-wear properties in 100N and DB-51 oils. However, dithiocarbamate and 1,3,4-thiadiazole dendrimers were not effective anti-wear additives in soybean oil.

Preparation and Optical Characterization of Mesoporous Silica Films with Different Pore Sizes

  • Bae, Jae-Young;Choi, Suk-Ho;Bae, Byeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1562-1566
    • /
    • 2006
  • Mesoporous silica films with three different pore sizes were prepared by using cationic surfactant, non-ionic surfactant, or triblock copolymer as structure directing agents with tetramethylorthosilicate as silica source in order to control the pore size and wall thickness. They were synthesized by an evaporation-induced self-assembly process and spin-coated on Si wafer. Mesoporous silica films with three different pore sizes of 2.9, 4.6, and 6.6 nm and wall thickness ranging from $\sim$1 to $\sim$3 nm were prepared by using three different surfactants. These materials were optically transparent mesoporous silica films and crack free when thickness was less than 1 m m. The photoluminescence spectra found in the visible range were peaked at higher energy for smaller pore and thinner wall sized materials, consistent with the quantum confinement effect within the nano-sized walls of the silica pores.

Studies on Enhanced Oxidation of Estrone and Its Voltammetric Determination at Carbon Paste Electrode in the Presence of Cetyltrimethylammonium Bromide

  • Yang, Chunhai;Xie, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1729-1734
    • /
    • 2007
  • The electrochemical behaviors of estrone in the presence of various surfactants were examined with great details. It is found that a cationic surfactant, cetyltrimethylammonium bromide (CTAB), obviously facilitates the electro-oxidation of estrone at carbon paste electrode (CPE) from the significant peak current enhancement and the negative shift of peak potential. Additionally, chronocoulometry and electrochemical impedance spectroscopy (EIS) were also used for further investigation of the electrode process of estrone, indicating that low concentration of CTAB exhibits excellent enhancement effects on the electrochemical oxidation of estrone, greatly enhances the diffusion coefficient and the electron transfer rate. Based on this, an electrochemical method was proposed for the determination of estrone. The oxidation peak current is proportional to the concentration of estrone in the ranges over 9.0 × 10?8 - 8.0 × 10?6 mol/L, and a low detection limit of 4.0 × 10?8 mol/L was obtained for 180s accumulation at open circuit (S/N = 3). Finally, this proposed method was demonstrated using estrone tablets with good satisfaction.

Synthesis of PMMA/Clay Nanocomposite via Emulsion Polymerization (유화중합을 이용한 PMMA/Clay 나노컴포지트의 제조)

  • Kim, Cheol-Woo;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • Poly(methyl methacrylate)/clay nanocomposite particles with particle size of 275${\sim}$292 nm range were successfully prepared using emulsion polymerization. The content of montmorillonite based on the methyl methacrylate monomer was chosen as 30 wt.%. 2,2-azobis(isobuthylamidine hydrochloride) and n-dodecyltrimethylammonium chloride were used as an initiator and a surfactant in cationic emulsion system. Potassium persulfate and sodium lauryl sulfate were used as an initiator and a surfactant in anionic emulsion system. The evidence of intercalated /exfoliated structure of montmorillonite in the nanocomposite prepared in our experiment was confirmed by wide angle x-ray diffraction patterns of $d_{001}$ plane. Thermal behavior of nanocomposite was traced using DSC and TGA. It was found that the nanocomposite particle prepared by cationic emulsion system showed intercalated structured. We also found that the nanocomposite particle obtained from anionic emulsion system resulted in the fully exfoliated structure.

Oxidation of Dibenzothiophene Catalyzed by Surfactant-Hemoprotein Complexes in Anhydrous Nonpolar Organic Solvents

  • Ryu, Keun-Garp;Chae, Young-Rae;Kwon, O-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.647-650
    • /
    • 2003
  • In anhydrous organic solvents, the complexes formed between AOT (dodecylbenzene sulfuric acid sodium salt) and hemoproteins, such as hemoglobin, myoglobin, or cytochrome c, displayed remarkably higher activity than the hemoprotein powders to oxidize dibenzothiophene, a model compound of organic sulfurs contained in fossil fuels. In slightly hydrophobic organic solvents, such as ethyl acetate and butyl acetate, dibenzothiophene was completely oxidized catalytically by the cytochrome c-AOT complex with cumene hydroperoxide (${\alpha},{\alpha}-dimethylbenzyl$ hydroperoxide) as an oxidant. In highly hydrophobic organic solvents, such as decane and hexadecane, however, the activity of the cytochrome c-AOT complex decreased, presumably due to the aggregation of the hemoprotein-AOT complex in these solvents.