• Title/Summary/Keyword: chemical solution

Search Result 6,735, Processing Time 0.032 seconds

Manufacturing of Monodisperse Pectin Hydrogel Microfibers Using Partial Gelation in Microfluidic Devices (미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조)

  • Jin, Si Hyung;Kim, Chaeyeon;Lee, Byungjin;Shim, Kyu-Rak;Kim, Dong Young;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.270-278
    • /
    • 2017
  • This study introduces a method to easily fabricate highly monodisperse pectin hydrogel microfibers in a microfluidic device by using partial gelation. The hydrodynamic parameters between the pectin aqueous solution and the calcium ions containing oil solution are precisely controlled to form a stable elongation flow of the pectin aqueous solution, and partial gelation of the pectin aqueous solution is performed by the chelating of the calcium ions at the interface between the two phases. The partially gelled pectin aqueous solution is phase-separated from the oil solution in an aqueous calcium chloride solution outside the microfluidic device and is completely gelled to produce monodisperse pectin hydrogel microfibers. The thickness of the pectin hydrogel microfiber is controlled in a reproducible manner by controlling the volumetric flow rate of the initially injected pectin aqueous solution. The pectin hydrogel microfibers were 200 to 500 micrometers in diameter and had a coefficient of variation below 5% under all thickness conditions, indicating that the pectin hydrogel microfibers produced by partial gelation are highly monodisperse. In addition, biomaterials can be immobilized to the pectin hydrogel microfibers produced by a single process, demonstrating the possibility that our pectin hydrogel microfiber can be used as carriers for biomaterials or tissue engineering.

The Heterogeneous Reaction of Calcinated Alunite Powder with Ammonium Buffer Solution (蝦燒 Alunite 粉末과 암모늄鹽 緩衝溶液과의 不均一反應)

  • Hee Chul Lee;Chul Young Kim;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.381-385
    • /
    • 1975
  • Calcinated alunite powder (surface area 5100 $cm^2/g$) was found to react with well stirred ammonium buffer solution (pH 8.0) following Jander's equation. The rate constants increase with the amount of solid and temperature of reaction system. The energy of activation for the reactions (at $30{\sim}60^{\circ}C$) was 15.7 kcal/mole. The rate-determining step appears to involve ionization of alunite.

  • PDF

The Study on the Surface State of Mg2Ni Exposed to Air by a Chemical Treatment (화학처리방법을 이용한 공기중에 노출된 Mg2Ni의 표면상태에 관한 연구)

  • Han, Jeong-Seop
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.2
    • /
    • pp.91-100
    • /
    • 1995
  • To investigate the surface state of $Mg_2Ni$ which was exposed to the air, a chemical treatment was undertaken with $H_2SO_4$ solution. During chemical treatment, the change of pH was measured continuously and the chemically treated specimen was hydrided to study the effect of chemical treatment on the hydrogenation. The pH changing behavior with the various $H_2SO_4$ concentration appeared very diffemrently. Especially in the solution including 3CC $H_2SO_4$, the behavior of pH change can be divided 3 steps. It is also shown that the $Mg_2Ni$ chemically treated with $H_2SO_4$ can be hydrided even under room temperature. By the SEM observation the was reasion that after chemical treatment the surface of a particle was covered with Ni layer.

  • PDF

Solution Structure of Bovine Pancreatic Trypsin Inhibitor using NMR Chemical Shift Restraints

  • Park, Kyunglae;Wil
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.79-94
    • /
    • 1997
  • The solution structure of bovine pancreatic trypsin inhibitor(BPTI) has been refined by NMR chemical shift data of C${\alpha}$H using classical molecular dynamics simulation. The structure dependent part of the observable chemical shift was modeled by ring current effect, magnetic anisotropy effect from the nearby groups, whereas the structure independent part was replaced with the random coil shift. A new harmonic function derived from the differences between the observed and calculated chemical shifts was added into physical force field as an pseudo potential energy term with force constant of 250 kJmol-1 ppm-2. During the 1.5 ns molecular dynamics simulation with chemical shift restraints BPTI has accessed different conformation space compared to crystal and NOE driven structure.

  • PDF