• 제목/요약/키워드: chemical pump

검색결과 195건 처리시간 0.024초

고체/기체계 가역 화학 반응열 이용 HEAT PUMP 기술 개발

  • 이종호
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1993년도 추계학술발표회 초록집
    • /
    • pp.78-81
    • /
    • 1993
  • AN EXTENSIVE RESEARCH AND DEVELOPMENT WORK WILL BE CARRIED OUT FOR THE COMMERCIALIZATION OF THE CHEMICAL HEAT PUMP SYSTEM WHICH BASED ON THE ELF AQUITAINE FRANCE PATENTED AND KIME LICENSED SOLID/GAS CHEMICAL REACTION TECHNOLOGY. TOWARD ON THAT GOAL, THE BASIC AND ENGINEERING DETAILS SUCH AS IMPEX BLOCK MATERIAL, PHYSICO-CHEMICAL AND THERMO-CHEMICAL CHARACTERISTICS OF REACTION MECHANISMS IN THE SOLID/GAS CHEMICAL REACTION HEAT PUMP SYSTEMS. THREE KIND OF APPLICATION SYSTEM ARE NOW INVESTIGATED; AIR CONDITIONING, REFRIGERATOR AND INDUSTRIAL PROCESS HEATING AND COOLING SYSTEM.

  • PDF

$MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구 (A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump)

  • 권오경;윤재호;김정욱;이진호
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발(II) (Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump(II))

  • 김성종;김정일;김기준
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.271-278
    • /
    • 2007
  • In this study, applicable possibility in chemical decontamination for reactor coolant pump(RCP) was investigated for the various stainless steels. The stainless steel(STS) 304 showed the best electrochemical properties for corrosion current density and the lowest weight loss ratio in chemical decontamination process model 3-3 than other materials. The weightloss quantity in chemical decontamination process model 3-3 presents the lowest value compare to the other chemical decontamination process model 1, 2, 3-1 and 3-2. In the case of SEM observation, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

Metal Hydride Chemical Heat Pump의 최적 작동조건에 관한 연구 (Optimum Operating Conditions of Metal Hydride Chemical Heat Pump)

  • 권기원;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제1권1호
    • /
    • pp.24-30
    • /
    • 1989
  • Prototype metal hydride chemical heat pump was constructed using $LaNi_{4.7}Al_{0.3}$ for high temperature hydride and $MmNi_{4.15}Fe_{0.65}Al_{0.2}$ for low temperature hydride, and the effects of operating conditions on the performace of heat pump were investigaed to find out the optimum operating condition. Operating variables considered in this work were cycling time, temperature of hot air blown to the high temperature reactor, the amount of hydrogen gas with which the system was charged initially, and the flow rate of air at both reactors. Power of heat pump increases monotonically as $T_h$ increases, and shows maxima at 4.8H/M and 15-25 min in $H_2$ charged and cycling time respectively. Power of heat pump increases as air flow rate increases at low flow rate, but saturates to some value confined by heat flow rate through the hydride bed, These all phenomena can be explained by the modified power equation.

  • PDF

Verification of mechanical failure mode through corrosion test of a pump for soil sterilizer injection

  • Han-Ju Yoo;Jooseon Oh;Sung-Bo Shim
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.817-828
    • /
    • 2023
  • Deteriorating soil physical properties and increasing soil pathogens due to the continuous cultivation of field crops are the leading causes of productivity deterioration. Crop rotation, soil heat treatment, and chemical control are used as pest control methods; however, each has limitations in wide application to domestic agriculture. In particular, chemical control requires improvement due to direct exposure to sterilizing solution, odor, and high-intensity work. To improve the overall domestic agricultural environment, the problems of time and cost, such as field maintenance and cultivation scale, must be addressed; therefore, mechanization technology for chemical control must be secured to derive improvement effects in a short period. Most related studies are focused on the control effect of the DMDS (dimethyl disulfide) sterilizer, and research on the performance of the sterilization spray device has been conducted after its introduction in Korea, but research on the corrosion suitability of the material is lacking. This study conducted a corrosion test to secure the corrosion resistance of a soil sterilizer injection pump, and a mechanical failure mode by corrosion by the material was established. The corrosion test comprised operation and neglect tests in which the sterilizing solution was circulated in the pump and remained in the pump, respectively. As a result of the corrosion test, damage occurred due to the weakening of the mechanical strength of the graphite material, and corrosion resistance to aluminum, stainless steel, fluororubber, and PPS (polyphenylene sulfide) materials was confirmed.

화학적 열 펌프의 주 반응으로서의 2-propanol 반응 (Dehydrogenation of 2-propanol as a chief reaction for the chemical heat pump)

  • 김태경;여영구;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1085-1090
    • /
    • 1991
  • Chemical heat pump is a system to upgrade the low level energy such as industrial waste heat and solar energy by using coupled endothermic and exothermic chemical reactions. Dehydrogenation of 2-propanol can absorb heat near 80.deg. C and is transformed into acetone and hydrogen. Hydrogenation of acetone can liberate heat near 200.deg. C. Dehydrogenation of 2-propanol is difficult around 80.deg. C because .DELTA.G has positive value, but dehydrogenation reaction in liquid phase can overcome this problem because vaporized acetone and hydrogen can be rapidly eliminated. In this work, dehydrogenation of 2-propanol was investigated in liquid phase with Raney nickel catalyst. The energy efficiency of the chemical heat pump was estimated by computer simulation.

  • PDF

원자로 냉각재 펌프용 재료의 화학 제염 공정 시 적용 가능성 평가 (Evaluation of application possibility in chemical decontamination of materials for reactor coolant pump)

  • 김정일;김기준;김성종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.84-94
    • /
    • 2007
  • As a reactor coolant pump(RCP) is operated in the nuclear power system for a long time. so its surface is continuously contaminated by radioactive scales. In order to perform regular or emergency repair about RCP internals a special decontamination process should be used to reduce the radiation from the RCP surface by means of chemical cleaning. In this study, applicable possibility in chemical decontamination for RCP was investigated on the various materials. The STS 304 showed the best electrochemical properties for corrosion resistance than other materials. However, the pitting corrosion was slightly generated in both STS 415 and STS 431 with the increasing numbers of cycle and intergranular corrosion were sporadically observed. The size of their pitting corrosion and intergranular corrosion were also increased with increasing cycle numbers.

자동요소생성 시스템을 이용한 케미컬 펌프의 지진해석 (Seismic Analysis of Chemical Pump Using Automatic Mesh Generation System)

  • 장현석;이준성
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.685-690
    • /
    • 2011
  • 본 논문은 자동요소생성 시스템을 이용한 화학적펌프의 지진해석에 대한 내용이다. 전처리시스템을 CAD시스템, 유한요소 코드와 통합시킨 자동화된 해석시스템은 구조물 최적화 디자인에 효과적으로 사용되어 진다. 해석조건이 수반된 유한요소모델은 자동적으로 해석모델로 부터 생성되어 진다. 또한, 유한요소모델은 해석코드에 의해 자동적으로 해석되어 진다. 이 통합화된 유한요소 시뮬레이션 시스템의 효용성을 화학펌프와 같은 3차원 복잡구조물에 적용하여 보았다.

화학식 냉동기의 성능 및 반응기 거동에 관한 연구 (A Study on Performance and Reactor Behavior of Chemical Refrigerator)

  • Park, Seung-Hoon;Lee, Jong-Ho
    • 에너지공학
    • /
    • 제6권1호
    • /
    • pp.87-95
    • /
    • 1997
  • 금속염화물과 암모니아간의 가역반응을 이용한 화학열펌프는 비프레온계 냉동 냉장시스템으로서 환경규약의 제한이 없고 가스, 전기 및 산업폐열 등 다양한 구동열원을 사용할수 있으며 축열에 의한 에너지 저장이나 산업공정에서의 대용량 에너지관리 시스템 등 응용분야가 다양한 장점을 갖고 있다. 통상 소규모의 실험실 장치에서 파일롯트 플랜트(pilot plant)로 전환하는 과정에서 시스템의 성능에 대한 해석이 필요하며 화학반응기의 거동에 대한 컴퓨터 모사도 필수적이다. 따라서 본 연구에서는 작동조건에 따라 화학식 냉동기 성능계수가 어떻게 변하는지를 예측하였고 반응기 모델링에 의한 동적모사를 수행하여 반응기의 온도거동, 작동조건에 따른 전화율 변화, 반응혼합물의 제조변수가 냉동기 성능에 미치는 영향 등을 고찰하였다.

  • PDF