• Title/Summary/Keyword: chemical pump

Search Result 195, Processing Time 0.021 seconds

고체/기체계 가역 화학 반응열 이용 HEAT PUMP 기술 개발

  • 이종호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.78-81
    • /
    • 1993
  • AN EXTENSIVE RESEARCH AND DEVELOPMENT WORK WILL BE CARRIED OUT FOR THE COMMERCIALIZATION OF THE CHEMICAL HEAT PUMP SYSTEM WHICH BASED ON THE ELF AQUITAINE FRANCE PATENTED AND KIME LICENSED SOLID/GAS CHEMICAL REACTION TECHNOLOGY. TOWARD ON THAT GOAL, THE BASIC AND ENGINEERING DETAILS SUCH AS IMPEX BLOCK MATERIAL, PHYSICO-CHEMICAL AND THERMO-CHEMICAL CHARACTERISTICS OF REACTION MECHANISMS IN THE SOLID/GAS CHEMICAL REACTION HEAT PUMP SYSTEMS. THREE KIND OF APPLICATION SYSTEM ARE NOW INVESTIGATED; AIR CONDITIONING, REFRIGERATOR AND INDUSTRIAL PROCESS HEATING AND COOLING SYSTEM.

  • PDF

A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump ($MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구)

  • ;;;;Yukitaka Kato
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump(II) (원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발(II))

  • Kim, Seong-Jong;Kim, Jeong-Il;Kim, Ki-Joon
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.6
    • /
    • pp.271-278
    • /
    • 2007
  • In this study, applicable possibility in chemical decontamination for reactor coolant pump(RCP) was investigated for the various stainless steels. The stainless steel(STS) 304 showed the best electrochemical properties for corrosion current density and the lowest weight loss ratio in chemical decontamination process model 3-3 than other materials. The weightloss quantity in chemical decontamination process model 3-3 presents the lowest value compare to the other chemical decontamination process model 1, 2, 3-1 and 3-2. In the case of SEM observation, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

Optimum Operating Conditions of Metal Hydride Chemical Heat Pump (Metal Hydride Chemical Heat Pump의 최적 작동조건에 관한 연구)

  • Kwon, Kee-Won;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.1 no.1
    • /
    • pp.24-30
    • /
    • 1989
  • Prototype metal hydride chemical heat pump was constructed using $LaNi_{4.7}Al_{0.3}$ for high temperature hydride and $MmNi_{4.15}Fe_{0.65}Al_{0.2}$ for low temperature hydride, and the effects of operating conditions on the performace of heat pump were investigaed to find out the optimum operating condition. Operating variables considered in this work were cycling time, temperature of hot air blown to the high temperature reactor, the amount of hydrogen gas with which the system was charged initially, and the flow rate of air at both reactors. Power of heat pump increases monotonically as $T_h$ increases, and shows maxima at 4.8H/M and 15-25 min in $H_2$ charged and cycling time respectively. Power of heat pump increases as air flow rate increases at low flow rate, but saturates to some value confined by heat flow rate through the hydride bed, These all phenomena can be explained by the modified power equation.

  • PDF

Verification of mechanical failure mode through corrosion test of a pump for soil sterilizer injection

  • Han-Ju Yoo;Jooseon Oh;Sung-Bo Shim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.817-828
    • /
    • 2023
  • Deteriorating soil physical properties and increasing soil pathogens due to the continuous cultivation of field crops are the leading causes of productivity deterioration. Crop rotation, soil heat treatment, and chemical control are used as pest control methods; however, each has limitations in wide application to domestic agriculture. In particular, chemical control requires improvement due to direct exposure to sterilizing solution, odor, and high-intensity work. To improve the overall domestic agricultural environment, the problems of time and cost, such as field maintenance and cultivation scale, must be addressed; therefore, mechanization technology for chemical control must be secured to derive improvement effects in a short period. Most related studies are focused on the control effect of the DMDS (dimethyl disulfide) sterilizer, and research on the performance of the sterilization spray device has been conducted after its introduction in Korea, but research on the corrosion suitability of the material is lacking. This study conducted a corrosion test to secure the corrosion resistance of a soil sterilizer injection pump, and a mechanical failure mode by corrosion by the material was established. The corrosion test comprised operation and neglect tests in which the sterilizing solution was circulated in the pump and remained in the pump, respectively. As a result of the corrosion test, damage occurred due to the weakening of the mechanical strength of the graphite material, and corrosion resistance to aluminum, stainless steel, fluororubber, and PPS (polyphenylene sulfide) materials was confirmed.

Dehydrogenation of 2-propanol as a chief reaction for the chemical heat pump (화학적 열 펌프의 주 반응으로서의 2-propanol 반응)

  • 김태경;여영구;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1085-1090
    • /
    • 1991
  • Chemical heat pump is a system to upgrade the low level energy such as industrial waste heat and solar energy by using coupled endothermic and exothermic chemical reactions. Dehydrogenation of 2-propanol can absorb heat near 80.deg. C and is transformed into acetone and hydrogen. Hydrogenation of acetone can liberate heat near 200.deg. C. Dehydrogenation of 2-propanol is difficult around 80.deg. C because .DELTA.G has positive value, but dehydrogenation reaction in liquid phase can overcome this problem because vaporized acetone and hydrogen can be rapidly eliminated. In this work, dehydrogenation of 2-propanol was investigated in liquid phase with Raney nickel catalyst. The energy efficiency of the chemical heat pump was estimated by computer simulation.

  • PDF

Evaluation of application possibility in chemical decontamination of materials for reactor coolant pump (원자로 냉각재 펌프용 재료의 화학 제염 공정 시 적용 가능성 평가)

  • Kim, Jeong-Il;Kim, Ki-Joon;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.84-94
    • /
    • 2007
  • As a reactor coolant pump(RCP) is operated in the nuclear power system for a long time. so its surface is continuously contaminated by radioactive scales. In order to perform regular or emergency repair about RCP internals a special decontamination process should be used to reduce the radiation from the RCP surface by means of chemical cleaning. In this study, applicable possibility in chemical decontamination for RCP was investigated on the various materials. The STS 304 showed the best electrochemical properties for corrosion resistance than other materials. However, the pitting corrosion was slightly generated in both STS 415 and STS 431 with the increasing numbers of cycle and intergranular corrosion were sporadically observed. The size of their pitting corrosion and intergranular corrosion were also increased with increasing cycle numbers.

Seismic Analysis of Chemical Pump Using Automatic Mesh Generation System (자동요소생성 시스템을 이용한 케미컬 펌프의 지진해석)

  • Jang, Hyun-Seok;Lee, Joon-Seong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.685-690
    • /
    • 2011
  • This paper describes a seismic analysis of chemical pump using automated mesh generation system. The use of an automated analysis system, involving FE codes together with CAD systems and FE pre- and post-processors, has provided an important step towards shortening the design process and structural optimization. The FE model, which is a FE mesh accompanied with the analysis condition, is automatically converted from the analysis model. The FE models are then automatically analyzed using the FE analysis code. This integrated FE simulation system is applied to an analysis of three-dimensional complex solid structures such as a chemical pump.

A Study on Performance and Reactor Behavior of Chemical Refrigerator (화학식 냉동기의 성능 및 반응기 거동에 관한 연구)

  • Park, Seung-Hoon;Lee, Jong-Ho
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1997
  • A chemical heat pump based on the reversible reactions between metal chlorides and ammonia gas is attractive alternative to compression system and liquid absorption systems in cooling and refrigerating fields. The advantages of chemical heat pump are no regulatory constants due to CFC refrigerants, utilization of gas, industrial waste heat, electricity, fuel oil etc. as heat sources and wide applications to energy storage system, large-scale energy managements for industrial process. The scale-up of chemical heat pump from laboratory prototype to pilot plants necessitates the interpretation of system performance and evaluation of dynamic behavior in the chemical reactor. This study contains the prediction of performance of chemical refrigerator according to operating condition, the dynamic simulations through reactor modelling, which is used for the calculation of reactive medium temperature and the conversion variation with reactor cooling temperature, and the effect survey of block parameters on the power of refrigerator.

  • PDF