• 제목/요약/키워드: chemical plant

검색결과 4,146건 처리시간 0.027초

식물추출액을 이용한 흑연으로부터 그래핀 생산 특성 (Characteristics of Graphene Production from Graphite using Plant Extracts)

  • 정용재;류호준;최초롱;안상현;김우중;김동호;최병서;;김범수
    • KSBB Journal
    • /
    • 제31권4호
    • /
    • pp.208-213
    • /
    • 2016
  • Recently, numerous studies have utilized graphene in biomedical applications such as drug delivery, cancer therapy, and bioimaging. In this study, graphene was eco-friendly prepared by liquid phase exfoliation of graphite using plant extracts in water. Initially, 12 different plants or plant parts were screened for the characteristic graphene peak at near 268 nm using UV-Vis spectrophotometric analyses. The ability to form stable black graphene dispersion was highest using Xanthium strumarium extract. Transmission electron microscopy images showed that about 5 layer-graphene was produced from 1 g/L of graphite, while more than 5 layers were formed from 2 g/L of graphite. The optimum X. strumarium concentration for graphene production was 2 g/100 mL.

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide

  • Abdel-Monaim, Montaser Fawzy
    • Mycobiology
    • /
    • 제41권1호
    • /
    • pp.47-55
    • /
    • 2013
  • Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field.

식물 특정효소저해제의 생물활성 조사에 의한 신규제초제 작용점 탐색 (Searching of Possible Target Enzymes for Herbicide Development using Commercial Plant-Specific Inhibitors)

  • 황인택;최정섭;박상희;이관휘;이병회;홍경식;조광연
    • 농약과학회지
    • /
    • 제5권1호
    • /
    • pp.36-45
    • /
    • 2001
  • 본 연구는 새로운 제초제 후보물질을 탐색하기 위하여 식물특이적 효소 저해제로 알려진 107개 기존 화합물에 대하여 생물활성을 조사하였다. Germination test, seedling assay, wheat leaf disc assay, cyanobacteria assay, whole plant assay를 통하여 15종의 저해제를 선발하였고 이들은 34종 효소를 저해하는 것으로 확인되었다. 이들 화합물 중에서 phenylhydrazine, purine, o-phenanthroline, oleylamine, 7,8-benzoquinoline, aminooxyacetic acid, dicyclohexylcarbodiimide 등은 성체를 이용한 온실 실험에서 높은 제초활성을 나타내었다. 7,8-benzoquinone, 8-hydroxyquinoline, 2,2'-dipyridyl 및 o-phenanthroline 등은 피, 벼, 토마토의 발아를 $1.25{\sim}5{\mu}M$의 농도에서도 억제하였다. 7,8-benzoquinoline, cyanuric fluoride, 4-methylpyrazole, tranylcypromine, oleylamine과 trifluoperazine 등은 $30{\sim}100{\mu}M$ 농도에서 cyanobacteria의 생육을 저해하였다. Dicyclohexyl carbodiimide와 chlorpromazine은 $100{\mu}M$ 농도에서 wheat leaf disc의 백화현상을 유기시켰다. 이상과 같이 생물학적 활성을 갖는 식물 특이적 효소저해제들은 신규제초제 후보물질을 선발하기 위한 새로운 대상효소로 이용될 수 있을 것으로 생각된다.

  • PDF

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • 제34권2호
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

Inhibition of Fusarium oxysporum f. sp. nicotianae Growth by Phenylpropanoid Pathway Intermediates

  • Shull, Timothy E.;Kurepa, Jasmina;Miller, Robert D.;Martinez-Ochoa, Natalia;Smalle, Jan A.
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.637-642
    • /
    • 2020
  • Fusarium wilt in tobacco caused by the fungus Fusarium oxysporum f. sp. nicotianae is a disease-management challenge worldwide, as there are few effective and environmentally benign chemical agents for its control. This challenge results in substantial losses in both the quality and yield of tobacco products. Based on an in vitro analysis of the effects of different phenylpropanoid intermediates, we found that the early intermediates trans-cinnamic acid and para-coumaric acid effectively inhibit the mycelial growth of F. oxysporum f. sp. nicotianae strain FW316F, whereas the downstream intermediates quercetin and caffeic acid exhibit no fungicidal properties. Therefore, our in vitro screen suggests that trans-cinnamic acid and para-coumaric acid are promising chemical agents and natural lead compounds for the suppression of F. oxysporum f. sp. nicotianae growth.

Biological Control Activity of Two Isolates of Pseudomonas fluorescens against Rice Sheath Blight

  • Choi Gyung-Ja;Kim Jin-Cheol;Park Eun-Jin;Choi Yong-Ho;Jang Kyoung-Soo;Lim He-Kyoung;Cho Kwang-Yun;Lee Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제22권3호
    • /
    • pp.289-294
    • /
    • 2006
  • Two isolates of mucous bacteria, mc75 and pc78, were isolated from fungal culture plate as culture contaminants with an interesting swarming motility. Both isolates were identified as Pseudomonas fluorescens based on microscopy, biochemical analysis, Biolog test and DNA sequence analysis of the 16S rRNA gene. Both strains have the exactly the same 16S rRNA gene sequences, and yet their biological control activity were not identical each other. In vitro analysis of antagonistic activity of two isolates against several plant pathogenic fungi indicated that both produced diffusible and volatile antifungal compounds of unknown identities. Treatment of the bacterial culture of P. fluorescens pc78 and its culture filtrate exhibited a strong biological control activity against rice sheath blight in vivo among six plant diseases tested. More effective disease control activity was obtained from treatment of bacterial culture than that of culture filtrate. Therefore, in addition to antifungal compound and siderophore production, other traits such as biofilm formation and swarming motility on plant surface may contribute to the biological control activity of P.fluorescens pc78 and mc75.