• Title/Summary/Keyword: chemical cellulose

Search Result 684, Processing Time 0.025 seconds

Conversion of Woody Biomass for Utilization( I )-The Preparation of Dissolving Pulp from Mechanical Pulp- (목질계 Biomass의 변환이용(제1보)-기계펄프로부터 용해용펄프의 제조-)

  • 양재경;임부국;이종윤
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.51-59
    • /
    • 1997
  • Dissolving pulp is a low yield(30∼35%) bleached chemical pulp that has a high cellulose content (95% or higher) suitable for use in cellulose derivatives such as rayon, cellulose acetate. This research was studied for dissolving pulp preparation as the raw material of viscose rayon from commertial pulps. (TMP, CP, DIP) In the change of pulp(cellulose) characteristics after sodium hypochlorite and solvolysis treatment. the following results were obtained In the case of sodium hypochlorite pretreatment, we have obtained pulp that high purity cellulose, but degree of polymerization was inclined to decrease less than 170∼240. Comparing sodium hypochlorite pretreatment and solvolysis pretreatment, solvolysis pretreatment is superior to sodium hypochlorite process for making dissolving pulp. We think that the low degree of polymerization of cellulose because of increasing degradation of cellulose during delignification treatment.

  • PDF

Novel Conductive Paste based on Cellulose Acetate Butyrate (셀룰로오스를 이용한 전도성 체이스트의 개발)

  • Kim, Tae-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.171-177
    • /
    • 2007
  • Polymer-based electrically conductive pastes have been used to make the conductive paths between voltage sources and devices. The pastes used for these applications consist of two main components: a polymer binder and a conductive filler. Having both low viscosity and good metal-encapsulating properties, cellulose acetate butyrate (CAB) was regarded to be a good candidate as a binder for the conductive paste. We have prepared a formulation for a novel conductive paste based on CAB. Preliminary studies showed that this conductive paste revealed stable conductivity, together with uniform coating and flexibility.

Separation and Identification of Polycyclic Aromatic Compounds in Pyrolysis Products of Cellulose and Lignin (셀룰로오스와 리그닌의 열분해 생성물중의 여러고리 방향족화합물의 분리와 동정)

  • Park, Nae-Joung;Lee, Milton L.
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.244-250
    • /
    • 1984
  • Separation and identification of the polycyclic aromatic compounds (PAC) from pyrolysis products of cellulose and lignin were performed using a combination of acid-base solvent partitioning and silicic acid column chromatography with fused-silica capillary column gas chromatography/ mass spectrometry. Sixteen PAC were positively identifited by retention indices and mass spectra data. Both materials produced the same kinds of PAC. But lignin produced much more PAC than cellulose. Almost no highly carcinogenic heterocyclic PAC containing nitrogen and sulfur were produced.

  • PDF

Recent Advances in Bacterial Cellulose Production

  • Shoda Makoto;Sugano Yasushi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Bacterial cellulose (BC), which is produced by some bacteria, has unique structural, functional, physical and chemical properties. Thus, the mass production of BC for industrial application has recently attracted considerable attention. To enhance BC production, two aspects have been considered, namely, the engineering and genetic viewpoints. The former includes the reactor design, nutrient selection, process control and optimization; and the latter the cloning of the BC synthesis gene, and the genetic modification of the speculated genes for higher BC production. In this review, recent advances in BC production from the two viewpoints mentioned above are described, mainly using the bacterium Gluconacetobacter xylinus.

Medium Composition Affecting Production of Bacterial Cellulose by Gluconacetobacter hansenii PJK in an Agitated Culture (배지조성이 Gluconacetobacter hansenii PJK의 Bacterial Cellulose의 교반 생산에 미치는 영향)

  • Jung Jae Yong;Chang Ho Nam;Park Joong Kon
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.451-456
    • /
    • 2004
  • The effects of variation in composition of the medium on the conversion of Gluconacetobacter hanseii PJK cells producing cellulose ($Cel^+$) to non-cellulose producing ($Cel^-$) mutants and the production of bacterial cellulose (BC) in an agitated culture were investigated. The impeller speed greater than 500 rpm was required to decrease the population of $Cel^-$ mutants to minimum in a basal medium containing $1.5\%$ ethanol because the optimum impeller speed to minimize the population of $Cel^-$ mutants increased with the concentration of ethanol added to a basal medium. Ethanol fed-batch culture could not increase the BC production in an agitated culture unlike that of a shaking culture. The amount of BC produced in a basal medium containing $1\%$ ethanol was $39\%$ more than that of the same medium with $0.27\%\;Na_{2}HPO_4$. Increase in the concentration of acetic acid in a basal medium decreased the BC production. The pH control of the culture broth increased the cell mass in the batch culture and improved the production yield of water-soluble polysaccharide (WSPS), but did not affect the production of BC.

A Study on Chemical Modification Effect of Papermaking Fiber by Cyanoethylation (Cyanoethyl화에 의한 제지용 섬유의 화학적 개질효과에 관한 연구)

  • Yoon, Se-Young;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.56-64
    • /
    • 1997
  • Since there are three hydroxyl groups on each anhydroglucose ring of the cellulose, the renewable resources, we can get various functional papers by the chemical modification of cellulose. The reaction involving the introduction of the ${\beta}$-cyanoethyl ($-CH_2-CH_2$-CN) group into organic substances containing reactive hydrogen atoms is known as cyanoethylation. Cellulose reacts with acrylonitrile in the presence of strong alkalis in a typical manner of primary and secondary alcohols to form cyanoethyl ethers. In cyanoethylation, important factors of reaction are temperature, concentration of the NaOH, and addition rate of acrylronitrile. FT-IR spectra of cyanoethyl group was confirmed at $2250cm^{-1}$, which corresponds the introduction of aliphatic nitrile group. Effect of cyanoethyl DS(degree of substitution) on strength properties was resulted that cyanoethylated BKP of DS 0.04 appeared to be the best choice for overall strength properties. Also, excellent thermal stability in aging characteristics was obtained.

  • PDF

Effect of chemical input during wet air oxidation pretreatment of rice straw in reducing biomass recalcitrance and enhancing cellulose accessibility

  • Morone, Amruta;Chakrabarti, Tapan;Pandey, R.A.
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2403-2412
    • /
    • 2018
  • The present study was aimed at evaluating the effect of variable sodium carbonate ($Na_2CO_3$) loading during wet air oxidation (WAO) pretreatment of rice straw in reducing biomass recalcitrance. The research study was intended to increase the cellulose recovery, hemicellulose solubilization, lignin removal in the solid fraction and limiting the generation of inhibitors in the liquid fraction while reducing the chemical input. The operating condition of $169^{\circ}C$, 4 bar, 18 min and 6.5 g/L $Na_2CO_3$ loading resulted in maximum cellulose recovery of 82.07% and hemicellulose solubilization and lignin removal of 85.43% and 65.42%, respectively, with a total phenolic content of 0.36 g/L in the liquid fraction. The crystallinity index increased from 47.69 to 51.25 along with enzymatic digestibility with an increase in $Na_2CO_3$ loading from 0 to 6.5 g/L as a result of removal of barriers for saccharification via effective cleavage of ether and ester bonds cross-linking the carbohydrates and lignin as indicated by FT-IR spectroscopy. A further increase in the $Na_2CO_3$ loading to 9.5 g/L did not significantly increase the sugar release. Thus, it was concluded that 6.5 g/L $Na_2CO_3$ during WAO is sufficient to increase the delignification and deacetylation, leading to significant changes in apparent cellulose crystallinity inter alia improvement in cellulose accessibility and digestibility of rice straw.

Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a New Bioreactor Equipped with Centrifugal Impellers (원심 임펠러가 장착된 발효조에서 G. hansenii에 의한 미생물셀룰로오스 생산)

  • Khan, Salman;Shehzad, Omer;Khan, Taous;Ha, Jung Hwan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.506-511
    • /
    • 2009
  • In order to improve the bacterial cellulose(BC) production yield, centrifugal and inclined centrifugal impellers were developed. A 6 flat-blade turbine impeller was used as a control system. The flow pattern in the fermenter and volumetric oxygen transfer coefficient($k_La$) of these fermentation systems were studied. Fermentations were carried out for the production of BC by G. hansenii PJK in a 2-L jar fermenter equipped with new impellers. Liquid medium was circulated from the bottom, through the cylinder of the impeller and to the wall. The volumetric oxygen transfer coefficients, $k_La$, of inclined centrifugal and centrifugal impeller systems at 100 rpm were 23 and 15% of the conventional turbine impeller system, respectively. However, the conversion of microbial cells to cellulose non-producing mutant decreased and this results in the increase in BC production at low rotating speed of impellers.

Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by Komagataeibacter hansenii ATCC 53582

  • Li, Zhaofeng;Chen, Si-Qian;Cao, Xiao;Li, Lin;Zhu, Jie;Yu, Hongpeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • Bacterial cellulose (BC) is widely used in the food industry for products such as nata de coco. The mechanical properties of BC hydrogels, including stiffness and viscoelasticity, are determined by the hydrated fibril network. Generally, Komagataeibacter bacteria produce gluconic acids in a glucose medium, which may affect the pH, structure and mechanical properties of BC. In this work, the effect of pH buffer on the yields of Komagataeibacter hansenii strain ATCC 53582 was studied. The bacterium in a phosphate and phthalate buffer with low ionic strength produced a good BC yield (5.16 and 4.63 g/l respectively), but there was a substantial reduction in pH due to the accumulation of gluconic acid. However, the addition of gluconic acid enhanced the polymer density and mechanical properties of BC hydrogels. The effect was similar to that of the bacteria using glycerol in another carbon metabolism circuit, which provided good pH stability and a higher conversion rate of carbon. This study may broaden the understanding of how carbon sources affect BC biosynthesis.

Stability Analysis of Bacillus stearothermopilus L1 Lipase Fused with a Cellulose-binding Domain

  • Hwang Sangpill;Ahn Ik-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.329-333
    • /
    • 2005
  • This study was designed to investigate the stability of a lipase fused with a cellulose­binding domain (CBD) to cellulase. The fusion protein was derived from a gene cluster of a CBD fragment of a cellulase gene in Trichoderma hazianum and a lipase gene in Bacillus stearother­mophilus L1. Due to the CBD, this lipase can be immobilized to a cellulose material. Factors affecting the lipase stability were divided into the reaction-independent factors (RIF), and the re­action-dependent factors (RDF). RIF includes the reaction conditions such as pH and tempera­ture, whereas substrate limitation and product inhibition are examples of RDF. As pH 10 and $50^{\circ}C$ were found to be optimum reaction conditions for oil hydrolysis by this lipase, the stability of the free and the immobilized lipase was studied under these conditions. Avicel (microcrystal­line cellulose) was used as a support for lipase immobilization. The effects of both RIF and RDF on the enzyme activity were less for the immobilized lipase than for the free lipase. Due to the irreversible binding of CBD to Avicel and the high stability of the immobilized lipase, the enzyme activity after five times of use was over $70\%$ of the initial activity.