• 제목/요약/키워드: chemical abundance

검색결과 274건 처리시간 0.031초

유기성폐기물이 느티나무 재배지 토양의 화학성 및 생물에 미치는 영향 (Effect of Organic Waste Application on Soil Chemical Properties and Organisms under Zelkova serrata Cultivation)

  • 어진우;김명현;남형규;권순익;송영주
    • 환경생물
    • /
    • 제36권4호
    • /
    • pp.471-478
    • /
    • 2018
  • 식품생산과정에서 발생하는 유기성폐기물인 골분, 유박, 굴 패화석을 토양에 투입한 결과 일부 처리구에서 토양생물과 화학성이 영향을 받았다. 골분은 토양의 질산태질소를 일시적으로 증가시켰고, 패화석은 pH를 증가시켰다. 골분은 느티나무 생장을 증진시키는 효과가 있었기 때문에 이차적으로 토양생태계에 영향을 미칠 수 있다. 미생물 PLFA는 패화석에 의해 증가하였으며 환경스트레스를 나타내는 지표도 낮은 경향이 있었다. 이것은 패화석이 양분 증가보다는 pH 증가를 통해 미생물의 서식환경을 개선하는 효과가 있다는 것을 보여준다. 토양미소동물 중에는 세균섭식성 선충만이 유박과 골분 처리구에서 증가하였다. 이들 밀도와 세균 PLFA 간에 상관관계는 없었다. 다만 식물생장과 식물섭식성선충의 유의적 상관관계는 유기물투입이 식물을 통해 이차적으로 토양생태계에 영향을 줄 수 있다는 것을 부분적으로 보여준다. 따라서 유기성폐기물 처리는 토양화학성 변화를 통해 일차적으로 미생물 군집에 영향을 주지만, 미생물을 섭식하는 생물군에게 상향식의 양적인 연쇄반응을 일으키지 않을 수 있다는 것을 시사한다.

Effects of Exocellobiohydrolase CBHA on Fermentation of Tobacco Leaves

  • Xueqin Xu;Qianqian Wang;Longyan Yang;Zhiyan Chen;Yun Zhou;Hui Feng;Peng Zhang;Jie Wang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권8호
    • /
    • pp.1727-1737
    • /
    • 2024
  • The quality of tobacco is directly affected by macromolecular content, fermentation is an effective method to improve biochemical properties. In this study, we utilized CBHA (cellobiohydrolase A) glycosylase, which was expressed by Pichia pastoris, as an additive for fermentation. The contents of main chemical components of tobacco leaves after fermentation were determined, and the changes of microbial community structure and abundance in tobacco leaves during fermentation were analyzed. The relationship between chemical composition and changes in microbial composition was investigated, and the function of bacteria and fungi in fermentation was predicted to identify possible metabolic pathways. After 48 h of CBHA fermentation, the contents of starch, cellulose and total nitrogen in tobacco leaf decreased by 17.60%, 28.91% and 16.05%, respectively. The microbial community structure changed significantly, with Aspergillus abundance decreasing significantly, while Filobasidum, Cladosporium, Bullera, Komagataella, etc., increased in CBHA treated group. Soluble sugar was most affected by microbial community in tobacco leaves, which was negatively correlated with starch, cellulose and total nitrogen. During the fermentation process, the relative abundance of metabolism-related functional genes increased, and the expressions of cellulase and endopeptidase also increased. The results showed that the changes of bacterial community and dominant microbial community on tobacco leaves affected the content of chemical components in tobacco leaves, and adding CBHA for fermentation had a positive effect on improving the quality of tobacco leaves.

Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

  • Yushchenko, Alexander V.;Jeong, Yeuncheol;Gopka, Vira F.;Vasil'eva, Svetlana V.;Andrievsky, Sergey M.;Yushchenko, Volodymyr O.
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권3호
    • /
    • pp.199-205
    • /
    • 2017
  • A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature $T_{eff}=4,250{\pm}50K$, the surface gravity ${\log}\;g=0.16{\pm}0.1$, the microturbulent velocity $v_{micro}=2.5km/s$, the macroturbulence velocity $v_{macro}=9km/s$ and the iron abundance $[Fe/H]=-0.73{\pm}0.11$. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

KODOS-89 지역 망간단괴의 성인과 분포 (Origin of Manganese Nodules and Their Distribution in the KODOS-89 Area, Northeastern Equatorial Pacific.)

  • 정회수;정갑식
    • 한국해양학회지
    • /
    • 제25권4호
    • /
    • pp.189-204
    • /
    • 1990
  • 태평양 클라리온-클리퍼톤 균열대 서부의 KODOS(Korea Deep Ocean Study)지역에 분포하는 망간단괴의 성인과 분포, 그리고 분포 원인을 규명하기 위하여 망간단괴와 퇴적물을 채취하여 화학 및 광물학적 분석을 하였다. 이 지역의 망간단괴는 Mn/Fe 비 가 크고 구리, 니켈, 아연, 마그네슘, 토도로카이트 함량이 높으며 표면조직이 거친 속성기원의 망간단괴(S-형 망간단괴)와 철, 코발트, 버나다이트 함량이 높고 표면조직 이 매끈한 수성기원의 망간단괴(S-형 망간단괴) 그리고 화학 및 광물조성과 표면조직 이 두 기원의 중간성격을 띄는 망간단괴(R-S-형 망간단괴)로 구분된다. 성인 및 부존 밀도 등의 특성에 따라 KODOS-89 지역은 크게 4지역으로 구분된다. 즉, 부존밀도가 10 kg/m$^2$이하이고 수성기원의 망간단괴가 분포하는 최북단지역, 부존밀도가 1 kg/m$^2$ 내 외이고 속성기원의 망간단괴가 분포하는 남부 지역, 그리고 부존밀도가 10 kg/m$^2$ 이 상으로 높고 수성기원의 망간단괴가 분포하는 해저산지역으로 구분된다. 이러한 망간 단괴의 분포특성은 주로 위도에 따른 수층의 생산성 및 해저지형의 차이에 의해 기인 되었다고 생각된다.

  • PDF

Chemical Differentiation of CS and N2H+ in Starless Dense Cores

  • Kim, Shinyoung;Lee, Chang Won;Sohn, Jungjoo;Kim, Gwanjeong;Kim, Mi-Ryang
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.45.2-45.2
    • /
    • 2018
  • CS molecule is known to be adsorbed onto dust in cold dense cores, causing its significant depletion in the center region of cores. This study is aimed to investigate the depletion of CS molecule with optically thin $C^{34}S$ molecular line observations, including significance of its differentiation depending on the evolutionary status of the dense cores. We mapped five evolved starless cores, L1544, L1552, L1689B, L694-2 and L1197 using two molecular lines, $C^{34}S$ (J=2-1) and $N_2H^+$ (J=1-0) with NRO 45 m telescope. The $H^2$ column density and temperature structures of each targets were obtained by SED fitting for Herschel continuum images and the internal number density profiles by model fitting. All of the integrated intensity maps of $C^{34}S$ show depletion holes and 'semi-ring-like' distribution, indicating that the depletion of CS is clear and general. The radial profiles of CS abundance also show significant decrease towards the core center, while $N_2H^+$ abundance is almost constant or enhanced. We find that the more evolved cores with higher $H^2$ density tend to have a stronger depletion of CS. Our data strongly support claims that CS molecule generally depletes out in the central regions of starless dense cores and such chemical differentiation is closely related to their evolution.

  • PDF

Insect natural enemies as bioindicators in rice paddies

  • Ueno, Takatoshi
    • 농업과학연구
    • /
    • 제39권4호
    • /
    • pp.545-553
    • /
    • 2012
  • In Asia, including Japan and Korea, rice paddies occupy the largest cultivated area in agricultural land. Rice paddies provide the habitats for many organisms including endemic species, sustaining high biodiversity. Insect natural enemies inhabiting rice paddies have an important function for rice production as agents of 'ecosystem services' because they play a major role in suppressing rice pests. The diversity and abundance of natural enemies can be a good index reflecting the 'healthiness' of agro-ecosystem services in rice paddies. The present study investigates whether insect natural enemies could be good biological indicators for general arthropod biodiversity and agricultural practice. First, the concept of ideal bio-indicators was summarized. The strategy to explore and select such bio-indicators was then proposed. Lastly, field survey was made to evaluate the abundance and biodiversity of natural enemies in Japanese rice paddies where chemical inputs, i.e., insecticide use, were different. The results showed that reduction of chemical inputs led to an increase in species richness or diversity of natural enemies including parasitoids and predators. Then, the data were analyzed to examine suitable indicator species to assess environmental soundness of agricultural practice and biodiversity in rice paddies. The density of several species of natural enemies did respond both to pesticide use and to general arthropod biodiversity. The analyses thus have indicated that natural enemies can be suitable as bio-indicators. Usefulness of indicator species in rice paddies is discussed in the context of ecologically sound agriculture.

Bacterial community analysis of stabilized soils in proximity to an exhausted mine

  • Park, Jae Eun;Lee, Byung-Tae;Kim, Byung-Yong;Son, Ahjeong
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.420-429
    • /
    • 2018
  • Soil stabilization is a soil remediation technique that reduces the mobility of heavy metals in soils. Although it is a well-established technique, it is nonetheless essential to perform a follow-up chemical assessment via a leaching test to evaluate the immobilization of heavy metals in the soil matrix. Unfortunately, a standard chemical assessment is not sufficient for evaluation of the biological functional state of stabilized soils slated for agricultural use. Therefore, it is useful to employ a pyrosequencing-based microbial community analysis for the purpose. In this study, a recently stabilized site in the proximity of an exhausted mine was analyzed for bacterial diversity, richness, and relative abundance as well as the effect of environmental factors. Based on the Shannon and Chao1 indices and rarefaction curves, the results showed that the stabilized layer exhibited lower bacterial diversity than control soils. The prevalence of dominant bacterial populations was examined in a hierarchical manner. Relatively high abundances of Proteobacteria and Methylobacter tundripaludum were observed in the stabilized soil. In particular, there was substantial abundance of the Methylobacter genus, which is known for its association with heavy metal contamination. The study demonstrated the efficacy of (micro)biological assessment for aiding in the understanding and post-management of stabilized soils.

Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.104-114
    • /
    • 2021
  • Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.