• Title/Summary/Keyword: chatter stability

Search Result 48, Processing Time 0.028 seconds

A modeling of dynamic cutting force and analysis of stability in chatter vibration (채터진동에서의 동적 절삭력의 모델링과 안정성 해석)

  • Kim, Jeong-Suk;Kang, Myeong-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1993
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is presented in order to predict the dynamic cutting force from the static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The stability analysis is carried out by a two degree of freedom system. The chatter experiments are conducted by exciting the cutting tool with an impact hammer during an orthogonal cutting. A good agreement is shown between the stability limits predicted by theory and the critical width of cut determined by experiments.

  • PDF

Prediction of the Chatter during the Milling Process of the Machine Tool (밀링 가공시 채터 현상 예측 기술개발)

  • Seo, Jae Woo;Park, Hyung Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.441-446
    • /
    • 2015
  • Chattering during the milling process causes severe problems on both the workpiece and cutting tools. However, chatter vibration is the inevitable phenomenon that operators require the prediction before the process or monitoring system to avoid the chatter in real-time. To predict the chatter vibration with the stability lobe diagram, the dynamic parameters of machine tool are extracted by considering cutting conditions and adapting the material properties. In this study, experimental verifications were taken for various aluminum types with different feed rates to observe the effect of the key parameters. The comparison between experimental results and the predictions was also performed.

The chatter vibration in metal cutting using the low stiffness tool (저강성 공구를 이용한 절삭에서의 채터 진동)

  • 김정석;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.424-432
    • /
    • 1989
  • A mathematical model is developed for determination of the dynamic cutting force from static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The proposed model is verified by the chatter stability charts. A good agreement was shown between the stability limits predicted by the theory and the critical width of cut determined by experiments. The static cutting coefficient dominates high speed chatter stability, while the dynamic cutting coefficient dominates low speed chatter stability.

Analytical Prediction of Chatter for Parallel Machine Tool (병렬형 공작기계의 채터 예측)

  • Kim, Taek-Soo;Hong, Dae-Hie;Choi, Woo-Chun;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.202-206
    • /
    • 2001
  • Machine tool chatter is the self-excited vibration generated by chip thickness variation and severely degrades the quality of machined surface. The incidence of chatter is greatly affected by the dynamic characteristics of machine tool structure. Therefore, the cutting dynamics in the parallel machine tool is to be carefully studied considering the dynamic characteristics of parallel mechanism. In this paper, the vibration model of parallel machine tool is derived, in which the legs of the parallel mechanism are considered as spring-damper systems. The chatter stability charts for various machining parameters are examined with the example of the cubic parallel mechanism that is specially designed for machine tool use.

  • PDF

A study on the PID controller-gain tuning of the magnetically suspended milling spindle for chatter-free cutting (채터없는 안정 가공을 위한 자기베어링 밀링 주축의 PID 제어 게인 튜닝 연구)

  • 경진호;노승국;박종권;박선원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.117-120
    • /
    • 2003
  • A method for PID controller tuning based on process models for unstable processes was introduced. The optimal. proportional and derivative gains of the AMBs were determined by the tuning method and utilized for the chatter stability analysis in order to search for the chatter-free cutting region. The stability analysis results showed that the optimal gains give wider chatter-free cutting region, and as a result the proposed tuning method was confirmed to be an effective tuning method for determining the optimal gains of the AMBs.

  • PDF

Study on Controller Design for an Active Magnetic Bearing Milling Spindle Using Chatter Stability Analysis (채터 안정성 해석을 이용한 자기베어링 밀링 주축의 제어기 설계 연구)

  • 경진호;박종권;노승국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.440-445
    • /
    • 2002
  • The characteristic equation for regenerative chatter loop including a delay element replaced by a rational function is presented by a linear differential-difference equation, accounting for the dynamics of the AMB controllers, the uncut chip thickness equation and the cutting process as well as the rigid spindle dynamics itself. The chatter stability analysis of a rigid milling spindle suspended by 5-axes active magnetic bearings(AMBs) is also performed to investigate the influences of the damping and stiffness coefficients of AMBs on the chatter free cutting conditions, as they are allowed to vary within the stable region formed by the AMB control gains. Several cutting tests varying the derivative gains of the AMB were performed to investigate the regenerative chatter vibrations, and it was concluded that the theoretical analysis results are in good consistency with the test results.

  • PDF

Dynamic Characteristics Analysis and Chatter Prediction in High Speed CNC Lathe (고속 CNC 선반의 동특성 해석과 채터 예측)

  • Lee, Woo-Seok;Lee, Sin-Young;Lee, Jang-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.151-157
    • /
    • 1999
  • Vibrations in machine tools make many problems in precision, production efficiency, and machine performance. The relative vibration between a workpiece and a tool is very complicated due to many sources. In this study, the dynamic characteristics of a newly developed CNC lathe were analyzed and its chatter characteristics were predicted by a chatter analysis method using finite element analysis and 3 dimensional cutting dynamics. The simulated results showed very complex characteristics of chatter vibration and the borderline of limiting depth of cut was used as the stability limit. To check the validity of this method, cutting tests were done in the CNC lathe using a boring bar as a tool because boring process is very weak due to long overhang . The experimental results showed that the simplified borderline was to be considered as limiting depth of cut at which the chatter vibration starts and the stability limits depended on various cutting parameters such as cutting speed, feed and nose radius of tool.

  • PDF

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF