• Title/Summary/Keyword: chatGPT

Search Result 247, Processing Time 0.03 seconds

Patterns of National Media Reports related to 'Artificial Intelligence and School' ('인공지능과 학교' 관련 전국 단위 언론사 보도형태)

  • Choong-Hoon Kwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.331-332
    • /
    • 2023
  • 최근 ChatGPT, 코딩교육, 디지털교과서 등의 새로운 용어와 산물들이 전국 단위 언론사를 통해, 교육 전문가(교사 등)와 일반 국민들에게 어떤 형태의 보도가 진행되는지 확인하는 것이 중요한 연구 출발점이다. 본 연구는 오늘날 학교교육, 교육방법(매체론) 등에 큰 변화를 줄 '인공지능'에 대한 전국 단위 언론사(일간지-11개사, 방송사-5개사)의 최근(2020-2023년) 보도형태를 분석하고 제시하였다. 본 연구에서는 2020년 1월부터 2023년 5월까지(3년 5개월간) 총 16개 언론사(일간지와 방송사)에서 보도한 '인공지능'와 '학교' 용어가 모두 포함된 관련 뉴스 기사들을 분석하였다. 분석대상 뉴스 빅데이터들을 대상으로 연도별 보도기사 건수 분석, 키워드 트렌드 분석, 연관어 분석(워드클라우드 제시) 등을 진행하였다.

  • PDF

Multi Agent Multi Action system for AI care service for elderly living alone based on radar sensor (레이더 센서 기반 독거노인 AI 돌봄 서비스를 위한 다중 에이전트 다중 액션 시스템)

  • Chae-Byeol Lee;Kwon-Taeg Choi;Jung-HO Ahn;Kyu-Chang Jang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.67-68
    • /
    • 2023
  • 본 논문에서 제안한 Multi Agent Multi Action은 기존의 대화형 시스템 방식인 Single Agent Single Action 구조에 비해 확장성을 갖춘 대화 시스템을 구현하는 방식이다. 시스템을 여러 에이전트로 분할하고, 각 에이전트가 특정 액션에 대한 처리를 담당함으로써 보다 유연하고 효율적인 대화형 시스템을 구현할 수 있으며, 다양한 작업에 특화된 에이전트를 그룹화함으로써 작업의 효율성을 극대화하고, 사용자 경험을 향상 시킬 수 있다.

  • PDF

A Survey about Vulnerabilities and Solutions of Autonomous vehicle security (자율주행 자동차 보안 취약성 및 솔루션 조사)

  • JaeKyung Park;SeungYoon Kang;Chat-GPT
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.615-616
    • /
    • 2023
  • 본 논문은 자율주행 자동차의 보안 취약성과 이를 해결하기 위한 솔루션에 대한 조사를 다루고 있다. 자동차의 자율주행 및 초연결성이 대두됨에 따라 보안 위협이 점점 중요해지는 현실을 직면하고 있다. 본 논문은 다양한 취약성을 카테고리 별로 다루고, 해당 취약성에 대응하기 위한 보안 솔루션과 현재 연구 개발 중인 솔루션들을 소개하고 있다. 그러나 아직 해결되지 않은 과제들이 산적해 있으며, 연구와 개발이 계속되어야 안전하고 신뢰성 있는 초연결 자율주행 자동차를 구현할 수 있을 것으로 기대한다.

  • PDF

A Research the literature on AI service security (AI 서비스 보안에 대한 자료 조사)

  • Juwon Kim;Jaekyoung Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.603-606
    • /
    • 2023
  • 인공지능 (AI) 서비스는 현대 사회에서 중요한 역할을 맡고 있다. 그러나 이러한 서비스는 보안과 관련된 문제들을 가지고 있다. 본 논문은 AI 서비스의 보안과 관련된 문제와 해결책을 조사하고자 한다. AI 서비스의 개요와 대표적인 상용 서비스를 간략히 소개 후, AI 서비스에서 발생할 수 있는 보안상의 문제와 Chat GPT를 중심으로 한 보안 문제에 대해 다루고자 한다. 또한, 향후 AI보안 서비스 연구 분야와 적재적 기계학습 연구에 대한 전망을 살펴볼 예정이다. 이를 통해 안전하고 신뢰성 있는 AI 서비스를 제공하는데 기여하고자 한다.

  • PDF

Examining the Feasibility of Utilizing a Large Language Model for Korean Grammatical Error Correction (한국어 맞춤법 교정을 위한 초거대 언어 모델의 잠재적 능력 탐색)

  • Seonmin Koo;Chanjun Park;JeongBae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.61-65
    • /
    • 2023
  • 최근, 대부분의 태스크가 초거대 언어 모델로 통합되고 있을 정도로 많은 관심 및 연구되고 있다. 초거대 언어 모델을 효과적으로 활용하기 위해서는 모델의 능력에 대한 분석이 선행되어야 하나, 한국어에 대한 분석 및 탐색은 상대적으로 부족하다. 본 논문에서는 한국어 맞춤법 교정 태스크를 통해 초거대 언어 모델의 능력을 탐색한다. 맞춤법 교정 태스크는 문장의 구조 및 문법을 이해하는 능력이 필요하며, 사용자의 만족도에 영향을 미칠 수 있는 중요한 태스크이다. 우리는 맞춤법 세부 유형에 따른 ChatGPT의 제로샷 및 퓨샷성능을 평가하여 초거대 언어 모델의 성능 분석을 수행한다. 실험 결과 제로샷의 경우 문장부호 오류의 성능이 가장 우수했으며, 수사 오류의 성능이 가장 낮았다. 또한, 예제를 더 많이 제공할수록 전체적인 모델의 성능이 향상되었으나, 제로샷의 경우보다 오류 유형 간의 성능 차이가 커지는 것을 관찰할 수 있었다.

  • PDF

Utilizing Large Language Models for Non-trained Binary Sentiment Classification (거대 언어 모델(LLM)을 이용한 비훈련 이진 감정 분류)

  • Hyungjin Ahn;Taewook Hwang;Sangkeun Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.66-71
    • /
    • 2023
  • ChatGPT가 등장한 이후 다양한 거대 언어 모델(Large Language Model, LLM)이 등장하였고, 이러한 LLM을 목적에 맞게 파인튜닝하여 사용할 수 있게 되었다. 하지만 LLM을 새로 학습하는 것은 물론이고, 단순 튜닝만 하더라도 일반인은 시도하기 어려울 정도의 많은 컴퓨팅 자원이 필요하다. 본 연구에서는 공개된 LLM을 별도의 학습 없이 사용하여 zero-shot 프롬프팅으로 이진 분류 태스크에 대한 성능을 확인하고자 했다. 학습이나 추가적인 튜닝 없이도 기존 선학습 언어 모델들에 준하는 이진 분류 성능을 확인할 수 있었고, 성능이 좋은 LLM의 경우 분류 실패율이 낮고 일관적인 성능을 보여 상당히 높은 활용성을 확인하였다.

  • PDF

An Application for Sharing Travel Activities Information by Using Deep Learning Models (딥러닝 모델을 활용한 관광지 활동 정보 공유 애플리케이션 )

  • Jiho Shin;Eunhye Gwon;Byungook Ryu;Byungjeong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.319-320
    • /
    • 2023
  • 일반적인 여행 커뮤니티는 사진과 텍스트 기반의 사용자 리뷰를 바탕으로 정보 공유를 한다. 본 연구에서는 관광지에서 수행한 활동을 한 문장의 형태로 공유하는 애플리케이션을 제안한다. ChatGPT를 활용하여 활동을 산책, 사진, 음식 등 9가지 태그로 분류하여 관광지가 가지는 특징을 용이하게 파악한다. 또한, 사용자가 작성한 활동을 임베딩하고 관광지 소개 글 벡터와 유사도를 비교하여 관광지를 추천한다. 본 애플리케이션을 통해 사용자가 긴 설명이나 사진 없이 관광지가 가지는 정보를 쉽게 공유하고 관광지 추천을 하는 새로운 여행 커뮤니티를 제공할 수 있을 것으로 기대한다.

Application Analysis of Artificial Intelligence Technology in Museum Concept Design

  • Chen Xi;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.321-327
    • /
    • 2023
  • The current rapid development of artificial intelligence technology has involved all aspects of the production field. The development of various algorithms and programs has pushed artificial intelligence to a new peak. Due to its complexity and diversity in the field of architectural design, the positive impact of artificial intelligence technology on architectural design is discussed from the perspective of conceptual design. For museums, which are one of the increasingly popular public facilities, the introduction of artificial intelligence technology has provided certain help in assisting the conceptual design of the museum. This article analyzes the theoretical and practical support of artificial intelligence technology in improving conceptual design, analyzing the architectural appearance, structural layout, materials, etc., to increase the feasibility and practicality of assisting conceptual design. It has certain reference significance for building a modern, advanced, international and interactive modern museum.

Large Language Models: A Guide for Radiologists

  • Sunkyu Kim;Choong-kun Lee;Seung-seob Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.126-133
    • /
    • 2024
  • Large language models (LLMs) have revolutionized the global landscape of technology beyond natural language processing. Owing to their extensive pre-training on vast datasets, contemporary LLMs can handle tasks ranging from general functionalities to domain-specific areas, such as radiology, without additional fine-tuning. General-purpose chatbots based on LLMs can optimize the efficiency of radiologists in terms of their professional work and research endeavors. Importantly, these LLMs are on a trajectory of rapid evolution, wherein challenges such as "hallucination," high training cost, and efficiency issues are addressed, along with the inclusion of multimodal inputs. In this review, we aim to offer conceptual knowledge and actionable guidance to radiologists interested in utilizing LLMs through a succinct overview of the topic and a summary of radiology-specific aspects, from the beginning to potential future directions.

The Effect of Chatbot Service Quality on Customer Satisfaction and Continuous Use Intention (챗봇 서비스품질이 고객만족과 지속사용의도에 미치는 영향)

  • Min Jeong KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • This study is about the effect of chatbot service quality on customer satisfaction and continuous use intention. Data collection was conducted for 13 days from October 23 to November 5, 2023, and a survey was conducted on customers who have used chatbot services. A total of 572 questionnaires were targeted, of which 545 valid data were used for analysis, excluding those that responded insincerely or did not meet the purpose of the study. The analysis results of this study are as follows: First, chatbot service quality partially had a significant effect on satisfaction. Second, customer satisfaction had a significant effect on continuous use intention. Therefore, in order to have a positive impact on continuous use intention, it is necessary to focus on marketing strategies related to chatbot service quality. Also, research focusing on data analysis and performance evaluation is crucial for enhancing chatbot services, necessitating studies that address real-time changes. Through sophisticated data analysis and variable measurement, chatbot services can be effectively improved, leading to enhanced customer satisfaction.