• Title/Summary/Keyword: chassis

Search Result 472, Processing Time 0.033 seconds

A study on the tire structure vibration for road noise reduction and chassis design (자동차 도로소음 저감과 샤시 설계를 위한 타이어 구조진동에 관한 연구)

  • Song, Youn-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.137-144
    • /
    • 1995
  • The purpose of this study is to obtain a foundation data for chassis design and road noise reduction of automobiles. Using the combination of the automobile, radial tires and instrumentation equipment, experimental investigation was carried out to examine the characteris- tics of the structural vibration of tire as the key to obtaining the effective parameters for reducing road noise. From the results of this studies it has been confirmed that the specific ranges of natural frequency of tire exciting the suspension and chassis system. And the tire, axle and chassis natural frequency of automobile govern the road noise. Results show that material properties of tire and experimental condition are major parameter for shifting of tire natural frequency. These results would be utilized as basic materials for the design of chassis design with papametric study, which enables a designer of an automobile to foresee the influence of the various design factors or operating conditions.

  • PDF

A Simulation Environment Development for Global Chassis Control System of Vehicles (통합 샤시제어 시스템 개발을 위한 시뮬레이션 환경 구축)

  • Hwang T.H.;Park K.;Heo S.J.;Lee M.S.;Lee K.H.;Kee S.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1095-1098
    • /
    • 2005
  • Most electronic chassis control systems until today have been designed with optimization on its own performance. However, According to the increase of the interest regarding a vehicle safety and development of information technique, the integration technique of current chassis systems is being emphasized. Each enterprise proposed it with name of GCC(Global Chassis Control) or UCC(Unified Chassis Control). This study realizes control algorithm of suspension and brake by using the vehicle model of low degree of freedom as the primary stage of realization of integrated chassis control system. The proposed algorithm build the simulation environment connected to the CarSim having full vehicle model of 27 degree of freedom for raising the thrust of results

  • PDF

Boundary Condition for Bare Chassis Brackets of the Commercial Vehicle

  • Yang, Seung Bok
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.94-100
    • /
    • 2022
  • It is common for commercial vehicles to make the top part according to the use after making the bear chassis, and to connect various devices with the bear chassis. Various brackets used in bear chassis for the development of all automobiles, including commercial vehicles, play a role of connecting the components required for driving and operating the car to the car body. In commercial vehicles, components necessary for operation are installed in the bear chassis; that is, the bear chassis of commercial vehicles is a space where the devices required for driving and operating the vehicle are installed. The devices required for the configuration of the vehicle are drive, brake, exhaust and steering, etc. These devices are basically connected to the body, the front axis, or the rear axis. The part interlinking the apparatuses required for the vehicle drive to the car body or axis is bracket. In this study, we analyzed the boundary conditions to evaluate the stability of the three brackets that connect the components of the car to the front axis of the new type of 30-seater bus in the development process. In order to analyze the boundary conditions, the boundary conditions according to the driving condition of the vehicle were classified. For stress analysis to evaluate the stability of brackets according to the driving state of the vehicle, it is reasonable to give the bracket a boundary condition of harsh conditions.

Development of a Position Correction System of Industrial Robot for Door Chassis Assembly Task (도어 장착을 위한 산업용 로보트의 위치 보정 시스템 개발)

  • 변성동;김미경;강희준;김상명
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.504-509
    • /
    • 1995
  • In this paper, we developed a position correction system of industrial robot for door-chassis assembly task. With the aid of a dedicated vision system, industrial robot accomplished visually acceptable door-chassis's assembly task. The alogorithm of the position detection of notch and 2 dimesional position correction algorithm are noteworthy. The obtained algorithms were satisfatorily implemented for a real door-chassis model.

  • PDF

Efficient heuristic of vehicle routing problem for container shuttle service (컨테이너 셔틀 서비스를 위한 차랑 경로 문제의 근사적 해법)

  • Shin, Jae-Young;Oh, Sung-Inn;Park, Jong-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.171-172
    • /
    • 2009
  • Generally, the container road transportal ion am be divided into three types; short distance, long distance and shuttle transportation. Also container vehicle am be divided into three types according to the chassis types of vehicle; only 20-feet container, only 40-feet container, combined chassis trailer. This paper deals with Vehicle Routing Problem(VRP) for delivering containers considering shuttle transportation. The shuttle service occurs several amounts of container which is same as O/D pairs. This problem is similar to the previously studied VRP for delivering containers using combined chassis trailers, but the characteristics of shuttle service must be considered additionally. We formulate the container shuttle transportation planning problem using combined chassis trailers based on VRP with pick-up and delivery which can visit each node more than one time, and propose an efficient solution procedure.

  • PDF

A Design on the chassis frame of passenger car using beam and spring Elements (빔과 스프링 요소를 이용한 승용차의 차체 프레임 설계)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.89-96
    • /
    • 1999
  • This paper presents the optimization design technique on the joint stiffness and section characteristic factors of chassis frame, by using beam and spring elements in a given design package. Two correction methods are used for the optimization design of chassis frame. First is the equivalent inertia of moment method in relation to the section characteristic factors of joint zones, which are thickness , width and height of frame channel section. Second is the rotational spring element with joint stiffness of joint zones. The CAE example shows that the relationship of section characteristic factors and joint stiffness can effectively be used in designing chassis frame. In this point, if static and dynamic targets are given, the joint-zone and section characteristic factors of chassis frame intended may be designed and defined by using beam and rotational spring elements.

  • PDF

Dimensional Analysis for the Front Chassis Module in the Auto Industry (자동차 프런트 샤시 모듈의 좌표 해석)

  • 이동목;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

Development of The High-Speed Container Handling System with On-Chassis Type (온-섀시 방식의 고속 컨테이너 하역시스템 개발)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.323-332
    • /
    • 2020
  • Container ships are getting bigger due to the increase in global cargo volume. Therefore, it needs to increase the speed for loading and unloading of containers at the quayside. Traditionally, only one container is handled at once at the quayside due to it's heavy weight. In this paper, a method of handling multiple containers at once using chassis is proposed. Proposed system is consists of a container chassis that can hold three layer stacked containers, transport system that can handle the container chassis including rail-based or vehicle-based roll-on roll-off systems, and dedicated crane system. The conceptual design of crane and transport system that can handle three stacked containers is carried out and verified. The proposed system can be adopted for real quayside container handling system with high speed.

A Study on Global Chassis Control Logic of Vehicles (차량 통합샤시제어 로직에 관한 연구)

  • 박기홍;허승진;손성효;장영하;황태훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1001-1005
    • /
    • 2003
  • Most electronic chassis control systems until today have been designed with optimization on its own performance. Recently, however. importance of the global chassis control (GCC) concept that aims to achieve optimal performance on a global basis is more emphasized than ever, as the x-by-wire technology is rapidly progressing. In this research, a study has been done for developing a GCC logic for combining longitudinal, lateral, and vertical chassis control subsystems. A simulation has been performed to investigate interactions among the subsystems, and based upon the results, a GCC logic has been developed. The logic has been tested under various driving conditions. and the results have been compared with those from implementing subsystems without any GCC logic.

  • PDF

An Experimental Study on Automobile Tire Road Noise for Design of Automobile Chassis (자동차 섀시 설계를 위한 자동차 타이어 도로소음에 관한 실험적 연구)

  • Kim, Byoung-sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.375-381
    • /
    • 2005
  • The purpose of this study is to obtain a foundation data for chassis design and road noise reduction of automobiles. Using the combination of the automobile, radial tires and instrumentation equipment, experimental investigation were carried out to examine the characteristics of the structural vibration of tire as the key to obtaining the effective parameters for reducing road noise. From the results of experimental studies it has been confirmed that the existence of important frequency ranges, which were attributable to the suspension and chassis system. The tire, axle and chassis natural frequency of automobile govern the road noise. Results that material property of tire and experimental condition are parameter for shifting of tire natural frequency, which enables a designer of an automobile to foresee the influence of the various design factors on the road noise.