• 제목/요약/키워드: chassis

검색결과 472건 처리시간 0.03초

굽힘과 비틀림 강성을 갖는 카트 섀시 프레임의 설계와 해석 (Design and Analysis of Kart Chassis Frame for Bending and Torsional Stiffness)

  • 장성국;강신하
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.226-231
    • /
    • 2003
  • There have been many attempts to make kart chassis domestically to lower the price of complete kart. However nobody made a successful chassis due to the lack of understanding the characteristics of kart chassis frame. In this work, a baseline chassis frame under the bending and torsional load is studied. Design target is that the baseline chassis frame is quite adequate not only for the beginners but also for the beginning racers. Results from the analysis are used as a guide to design or modify the baseline chassis with the goal of proper torsional stiffness. Minimum increase in weight is being forced. As a result, the baseline chassis frame was designed, made, and tested. Based on the design results, complete karts are being manufactured by the small 1 size domestic company and these karts are being sold and run in the market.

차체의 턴성효과와 엔진의 진동이 승차감에 미치는 영향분석 (Effects of chassis flexibility and engine vibration in ride quality)

  • 강동권;유완석
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.205-213
    • /
    • 1997
  • In this study, dynamic analysis of a passenger car is carried out to analyze ride quality over a random road profile. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi- link type. The following five different models are constructed and compared to see the effects of engine vibration and chassis flexibility in the ride quality. (1) one rigid chassis model, (2) a rigid chassis and rigid engine model, (3) a rigid engine and flexible chassis model with one vibration mode, (4) one flexible chassis model with six engine vibration modes and one chassis vibration mode, (5) one flexible chassis model with seven vibration modes and four static correction modes. The result shows that engine vibration modes and the first bending mode of the chassis are important in the ride quality.

  • PDF

차량 횡방향 안정성 향상을 위한 통합섀시 제어 (Unified Chassis Control for Improvement of Vehicle Lateral Stability)

  • 조완기;이경수;윤장열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

샤시코너모듈 개발을 위한 부품의 내구 성능 예측에 대한 연구 (A Study on Durability Performance Estimation for Development of Chassis Corner Module)

  • 최성진;박정원;전광기;유영면;최규재;박태원
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.159-166
    • /
    • 2006
  • Chassis system has a large influence on ride quality, stability and NVH performance of a car. To improve the performance and reduce cost, the development of chassis modular assemblies is emphasized. To develop chassis corner modules, it is necessary to predict the performance of full vehicle motion such as ride, handling performance, NVH characteristics and durability of modules. In this paper, full vehicle test is performed to acquire the road load data of chassis corner module of passenger car. 3-axis simulator modeling are carried out to simulate reaction force analysis and fatigue analysis of new developed modules. Also, real simulator tests to validate performance of new developed modules are performed. We had developed the accelerated durability test procedure of KATECH PG and it is used to test chassis corner modules at laboratory and simulate durability performance. All these results have been provided to module and parts company and make an important role to develop chassis corner modules.

자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발 (Development of the Machine Vision System for Inspection the Front-Chassis Module of an Automobile)

  • 이동목;이광일;양승한
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.84-90
    • /
    • 2004
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influence on driver directly and hence it must be solved on the preferential basis. In the present research, an automated vision system has been developed to inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance of front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

차량전복 방지를 위한 통합섀시제어 (Unified Chassis Control to Prevent Vehicle Rollover)

  • 윤장열;이경수;조완기;김동신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1132-1137
    • /
    • 2007
  • This paper describes a Unified Chassis Control (UCC) strategy to prevent vehicle rollover by integrating individual modular chassis control systems such as Electronic Stability Control (ESC) and Continuous Damping Control (CDC). The UCC threshold is determined from a rollover index computed by estimated roll angle, roll rate and measured lateral acceleration. A direct yaw moment control method is used to design the ESC based on a 2-D bicycle model. Similarly, the CDC is designed based on a 2-D roll model using a direct roll moment control method. The performance of the proposed UCC scheme is investigated and compared to that of modular chassis controllers through computer simulations using a validated vehicle simulator. It is shown that the proposed the UCC can lead to improvements in vehicle stability and efficient actuation of chassis control systems.

  • PDF

자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발 (The development of the machine vision system to inspect the front-chassis module of an automobile)

  • 이동목;이광일;양승한
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.245-250
    • /
    • 2003
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influenced on driver directly and hence it must be solved on the preferential basis. In the present research an automated vision system has been developed th inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

  • PDF

전륜 횡력의 포화를 고려한 ESC와 AFS의 통합 섀시 제어 (Integrated Chassis Control with Electronic Stability Control and Active Front Steering under Saturation of Front Lateral Tire Forces)

  • 임성진
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.903-909
    • /
    • 2015
  • This article presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under saturation of front lateral tire force. Regardless of the use of AFS, the front lateral tire forces can be easily saturated. Under the saturated front lateral tire force, AFS cannot be effective to generate a control yaw moment needed for the integrated chassis control. In this paper, new integrated chassis control is proposed in order to limit the use of AFS in case the front lateral tire force is saturated. Weighed pseudo-inverse control allocation (WPCA) with variable weight is adopted to adaptively use the AFS. To check the effectiveness of the proposed scheme, simulation is performed on a vehicle simulation package, CarSim. From simulation, the proposed integrated chassis control is effective for vehicle stability control under saturated front lateral tire force.

통합 샤시 제어를 위한 횡방향 안전성 판단 조건에 관한 연구 (An Investigation of the Lateral Stability Criteria for Integrated Chassis Control)

  • 안국진;좌은혁;고영일;이경수;손기모
    • 자동차안전학회지
    • /
    • 제9권2호
    • /
    • pp.26-32
    • /
    • 2017
  • This paper presents the lateral stability criteria for integrated chassis control. To determine the intervention timing of chassis control system, the lateral stability criteria is needed. The proposed lateral stability criteria is based on velocity-yawrate gain domain to determine whether vehicle is stable. If the yawrate gain violates the proposed criteria, the stability of the vehicle is considered as unstable. Characteristic velocity and critical velocity are employed to distinguish lateral stability criteria. The inside of the two boundaries is stable and the outside is unstable. If yawrate gain of vehicle violates the lateral stability criteria, the chassis control begin to intervene. To validate the lateral stability criteria, both computer simulations and vehicle test are conducted with respect to circular turn scenario. The proposed lateral stability criteria makes it possible to reduce intervention of chassis control system.

이동 로봇 섀시 누전 모니터링 센서 개발 (Development of Leakage Current Sensor for Mobile Robot Chassis)

  • 김청월;권익현;김성득;이영태
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.104-107
    • /
    • 2018
  • In this paper, we developed a sensor for monitoring the leakage current through the chassis of the robot. The leakage current sensor needs to be developed because it is a necessary part to prevent electric shock accidents that may occur through the chassis of a robot or an electric vehicle. This leakage monitoring sensor was developed to be mounted directly on the chassis of the robot. This sensor protects the control system from noise by discharging static and high-frequency noise that may occur in the chassis of the robot and monitors the leakage current by measuring the amount of current discharged through the ground. In this paper, a leakage monitoring sensor was developed with a simple structure using resistors, capacitors and OP-AMP, and the performance was evaluated.